热应力分析用服装套装的热特性。

D W Barker, S Kini, T E Bernard
{"title":"热应力分析用服装套装的热特性。","authors":"D W Barker,&nbsp;S Kini,&nbsp;T E Bernard","doi":"10.1080/00028899908984420","DOIUrl":null,"url":null,"abstract":"<p><p>The Heat Stress Index was an early model for the assessment of heat stress. The International Organization for Standardization (ISO) standard for required sweat rate is the current generation of heat balance methods for occupational heat stress. The method assumes cotton clothing and works adequately for cotton/polyester blends. To extend the usefulness of the model, the thermal characteristics of a variety of commercially available and prototype protective clothing ensembles have been determined for application in the ISO method. The fundamental principle for assessing thermal characteristics of work clothing is establishing the critical environmental conditions in which test subjects were just able to maintain thermal equilibrium. Critical conditions were found for warm, humid conditions; hot, dry conditions; intermediate conditions of temperature and humidity; and/or moderate conditions in which metabolic rate was increased to a limiting thermal load. Typically, five subjects at each condition for each ensemble were used. Metabolic rate, average skin temperature, and the environmental conditions (air temperature and vapor pressure) were noted at the critical conditions, and the total insulation was estimated for each ensemble. From these values, the total evaporative resistance, the clothing factor for dry heat exchange (CFcl), and the clothing factor for evaporative cooling (CFpcl) were determined. When compared with reports of others on thermal characteristics the results agreed when pumping factors and clothing wetness were considered. The result was higher than expected values for CFcl and lower values for CFpcl.</p>","PeriodicalId":7930,"journal":{"name":"American Industrial Hygiene Association journal","volume":"60 1","pages":"32-7"},"PeriodicalIF":0.0000,"publicationDate":"1999-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00028899908984420","citationCount":"24","resultStr":"{\"title\":\"Thermal characteristics of clothing ensembles for use in heat stress analysis.\",\"authors\":\"D W Barker,&nbsp;S Kini,&nbsp;T E Bernard\",\"doi\":\"10.1080/00028899908984420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Heat Stress Index was an early model for the assessment of heat stress. The International Organization for Standardization (ISO) standard for required sweat rate is the current generation of heat balance methods for occupational heat stress. The method assumes cotton clothing and works adequately for cotton/polyester blends. To extend the usefulness of the model, the thermal characteristics of a variety of commercially available and prototype protective clothing ensembles have been determined for application in the ISO method. The fundamental principle for assessing thermal characteristics of work clothing is establishing the critical environmental conditions in which test subjects were just able to maintain thermal equilibrium. Critical conditions were found for warm, humid conditions; hot, dry conditions; intermediate conditions of temperature and humidity; and/or moderate conditions in which metabolic rate was increased to a limiting thermal load. Typically, five subjects at each condition for each ensemble were used. Metabolic rate, average skin temperature, and the environmental conditions (air temperature and vapor pressure) were noted at the critical conditions, and the total insulation was estimated for each ensemble. From these values, the total evaporative resistance, the clothing factor for dry heat exchange (CFcl), and the clothing factor for evaporative cooling (CFpcl) were determined. When compared with reports of others on thermal characteristics the results agreed when pumping factors and clothing wetness were considered. The result was higher than expected values for CFcl and lower values for CFpcl.</p>\",\"PeriodicalId\":7930,\"journal\":{\"name\":\"American Industrial Hygiene Association journal\",\"volume\":\"60 1\",\"pages\":\"32-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/00028899908984420\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Industrial Hygiene Association journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/00028899908984420\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Industrial Hygiene Association journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00028899908984420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

热应激指数是早期评估热应激的模型。国际标准化组织(ISO)要求排汗率的标准是当前一代职业热应激的热平衡方法。该方法假设棉质服装,并适用于棉/聚酯混纺。为了扩展该模型的实用性,已经确定了各种市售和原型防护服的热特性,以便在ISO方法中应用。评估工作服热特性的基本原则是建立测试对象刚好能够保持热平衡的关键环境条件。在温暖潮湿的环境中发现了临界条件;炎热、干燥的环境;温度和湿度的中间条件;和/或适度的条件下,代谢率增加到极限热负荷。通常,在每个集合中,每个条件下使用五名受试者。在临界条件下记录代谢率、平均皮肤温度和环境条件(空气温度和蒸气压),并估计每个集合的总保温层。根据这些值,确定了总蒸发阻力、干热交换衣物系数(CFcl)和蒸发冷却衣物系数(CFpcl)。当与其他关于热特性的报告进行比较时,考虑到泵送因素和衣服湿度,结果一致。结果CFcl高于预期值,CFpcl低于预期值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermal characteristics of clothing ensembles for use in heat stress analysis.

The Heat Stress Index was an early model for the assessment of heat stress. The International Organization for Standardization (ISO) standard for required sweat rate is the current generation of heat balance methods for occupational heat stress. The method assumes cotton clothing and works adequately for cotton/polyester blends. To extend the usefulness of the model, the thermal characteristics of a variety of commercially available and prototype protective clothing ensembles have been determined for application in the ISO method. The fundamental principle for assessing thermal characteristics of work clothing is establishing the critical environmental conditions in which test subjects were just able to maintain thermal equilibrium. Critical conditions were found for warm, humid conditions; hot, dry conditions; intermediate conditions of temperature and humidity; and/or moderate conditions in which metabolic rate was increased to a limiting thermal load. Typically, five subjects at each condition for each ensemble were used. Metabolic rate, average skin temperature, and the environmental conditions (air temperature and vapor pressure) were noted at the critical conditions, and the total insulation was estimated for each ensemble. From these values, the total evaporative resistance, the clothing factor for dry heat exchange (CFcl), and the clothing factor for evaporative cooling (CFpcl) were determined. When compared with reports of others on thermal characteristics the results agreed when pumping factors and clothing wetness were considered. The result was higher than expected values for CFcl and lower values for CFpcl.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of leakage from a metal machining center using tracer gas methods: a case study. Assessment of magnetic field exposures for a mortality study at a uranium enrichment plant. An assessment of occupational noise exposures in four construction trades. Prediction of rectal temperature by the Questemp II personal heat strain monitor under low and moderate heat stress. The effects of keyswitch stiffness on typing force, finger electromyography, and subjective discomfort.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1