插层、转换和合金化锂离子电池电极材料的导热系数随其电荷状态的变化

IF 12.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Current Opinion in Solid State & Materials Science Pub Date : 2022-04-01 DOI:10.1016/j.cossms.2021.100980
Jungwoo Shin , Sanghyeon Kim , Hoonkee Park , Ho Won Jang , David G. Cahill , Paul V. Braun
{"title":"插层、转换和合金化锂离子电池电极材料的导热系数随其电荷状态的变化","authors":"Jungwoo Shin ,&nbsp;Sanghyeon Kim ,&nbsp;Hoonkee Park ,&nbsp;Ho Won Jang ,&nbsp;David G. Cahill ,&nbsp;Paul V. Braun","doi":"10.1016/j.cossms.2021.100980","DOIUrl":null,"url":null,"abstract":"<div><p>Upon insertion and extraction of lithium, materials important for electrochemical energy storage can undergo changes in thermal conductivity (Λ) and elastic modulus (<em>M</em>). These changes are attributed to evolution of the intrinsic thermal carrier lifetime and interatomic bonding strength associated with structural transitions of electrode materials with varying degrees of reversibility. Using <em>in situ</em> time-domain thermoreflectance (TDTR) and picosecond acoustics, we systemically study Λ and <em>M</em> of conversion, intercalation and alloying electrode materials during cycling. The intercalation V<sub>2</sub>O<sub>5</sub> and TiO<sub>2</sub> exhibit non-monotonic reversible Λ and <em>M</em> switching up to a factor of 1.8 (Λ) and 1.5 (<em>M</em>) as a function of lithium content. The conversion Fe<sub>2</sub>O<sub>3</sub> and NiO undergo irreversible decays in Λ and <em>M</em> upon the first lithiation. The alloying Sb shows the largest and partially reversible order of the magnitude switching in Λ between the delithiated (18 W m<sup>−1</sup> K<sup>−1</sup>) and lithiated states (&lt;1<!--> <!-->W<!--> <!-->m<sup>−1</sup> <!-->K<sup>−1</sup>). The irreversible Λ is attributed to structural degradation and pulverization resulting from substantial volume changes during cycling. These findings provide new understandings of the thermal and mechanical property evolution of electrode materials during cycling of importance for battery design, and also point to pathways for forming materials with thermally switchable properties.</p></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"26 2","pages":"Article 100980"},"PeriodicalIF":12.2000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Thermal conductivity of intercalation, conversion, and alloying lithium-ion battery electrode materials as function of their state of charge\",\"authors\":\"Jungwoo Shin ,&nbsp;Sanghyeon Kim ,&nbsp;Hoonkee Park ,&nbsp;Ho Won Jang ,&nbsp;David G. Cahill ,&nbsp;Paul V. Braun\",\"doi\":\"10.1016/j.cossms.2021.100980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Upon insertion and extraction of lithium, materials important for electrochemical energy storage can undergo changes in thermal conductivity (Λ) and elastic modulus (<em>M</em>). These changes are attributed to evolution of the intrinsic thermal carrier lifetime and interatomic bonding strength associated with structural transitions of electrode materials with varying degrees of reversibility. Using <em>in situ</em> time-domain thermoreflectance (TDTR) and picosecond acoustics, we systemically study Λ and <em>M</em> of conversion, intercalation and alloying electrode materials during cycling. The intercalation V<sub>2</sub>O<sub>5</sub> and TiO<sub>2</sub> exhibit non-monotonic reversible Λ and <em>M</em> switching up to a factor of 1.8 (Λ) and 1.5 (<em>M</em>) as a function of lithium content. The conversion Fe<sub>2</sub>O<sub>3</sub> and NiO undergo irreversible decays in Λ and <em>M</em> upon the first lithiation. The alloying Sb shows the largest and partially reversible order of the magnitude switching in Λ between the delithiated (18 W m<sup>−1</sup> K<sup>−1</sup>) and lithiated states (&lt;1<!--> <!-->W<!--> <!-->m<sup>−1</sup> <!-->K<sup>−1</sup>). The irreversible Λ is attributed to structural degradation and pulverization resulting from substantial volume changes during cycling. These findings provide new understandings of the thermal and mechanical property evolution of electrode materials during cycling of importance for battery design, and also point to pathways for forming materials with thermally switchable properties.</p></div>\",\"PeriodicalId\":295,\"journal\":{\"name\":\"Current Opinion in Solid State & Materials Science\",\"volume\":\"26 2\",\"pages\":\"Article 100980\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Solid State & Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359028621000838\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Solid State & Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359028621000838","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 8

摘要

在插入和提取锂后,对电化学储能至关重要的材料会发生导热系数(Λ)和弹性模量(M)的变化。这些变化归因于与电极材料结构转变相关的具有不同可逆性程度的固有热载子寿命和原子间键强度的演变。利用原位时域热反射(TDTR)和皮秒声学技术,系统地研究了循环过程中转换、插层和合金电极材料的Λ和M。插层V2O5和TiO2表现出非单调可逆Λ和M随锂含量的变化分别为1.8 (Λ)和1.5 (M)。在第一次锂化过程中,Fe2O3和NiO在Λ和M中发生不可逆的衰变。合金Sb在Λ中显示出最大且部分可逆的衰减态(18 W m−1 K−1)和锂化态(<1 W m−1 K−1)之间的数量级转换。不可逆Λ是由于循环过程中大量体积变化导致的结构降解和粉碎。这些发现提供了对电池设计中重要的循环过程中电极材料的热学和力学性能演变的新理解,也指出了形成具有热可切换性能的材料的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermal conductivity of intercalation, conversion, and alloying lithium-ion battery electrode materials as function of their state of charge

Upon insertion and extraction of lithium, materials important for electrochemical energy storage can undergo changes in thermal conductivity (Λ) and elastic modulus (M). These changes are attributed to evolution of the intrinsic thermal carrier lifetime and interatomic bonding strength associated with structural transitions of electrode materials with varying degrees of reversibility. Using in situ time-domain thermoreflectance (TDTR) and picosecond acoustics, we systemically study Λ and M of conversion, intercalation and alloying electrode materials during cycling. The intercalation V2O5 and TiO2 exhibit non-monotonic reversible Λ and M switching up to a factor of 1.8 (Λ) and 1.5 (M) as a function of lithium content. The conversion Fe2O3 and NiO undergo irreversible decays in Λ and M upon the first lithiation. The alloying Sb shows the largest and partially reversible order of the magnitude switching in Λ between the delithiated (18 W m−1 K−1) and lithiated states (<1 W m−1 K−1). The irreversible Λ is attributed to structural degradation and pulverization resulting from substantial volume changes during cycling. These findings provide new understandings of the thermal and mechanical property evolution of electrode materials during cycling of importance for battery design, and also point to pathways for forming materials with thermally switchable properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Opinion in Solid State & Materials Science
Current Opinion in Solid State & Materials Science 工程技术-材料科学:综合
CiteScore
21.10
自引率
3.60%
发文量
41
审稿时长
47 days
期刊介绍: Title: Current Opinion in Solid State & Materials Science Journal Overview: Aims to provide a snapshot of the latest research and advances in materials science Publishes six issues per year, each containing reviews covering exciting and developing areas of materials science Each issue comprises 2-3 sections of reviews commissioned by international researchers who are experts in their fields Provides materials scientists with the opportunity to stay informed about current developments in their own and related areas of research Promotes cross-fertilization of ideas across an increasingly interdisciplinary field
期刊最新文献
The path towards plasma facing components: A review of state-of-the-art in W-based refractory high-entropy alloys Artificial Intelligence and Machine Learning for materials Grain refinement and morphological control of intermetallic compounds: A comprehensive review Autonomous research and development of structural materials – An introduction and vision Monolithic 3D integration as a pathway to energy-efficient computing and beyond: From materials and devices to architectures and chips
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1