一氧化氮/ l -精氨酸在尿毒症中的作用。

S Aiello, M Noris, G Remuzzi
{"title":"一氧化氮/ l -精氨酸在尿毒症中的作用。","authors":"S Aiello,&nbsp;M Noris,&nbsp;G Remuzzi","doi":"10.1159/000057479","DOIUrl":null,"url":null,"abstract":"<p><p>Nitric oxide (NO), a gaseous free radical derived from L-arginine, is a potent modulator of vascular tone and platelet functions. A number of recent studies, both in the experimental model of renal mass reduction (RMR) in rats and in uremic patients, have raised the hypothesis that abnormalities of NO synthetic pathway could have a key role in mediating the complex hemodynamic and hemostatic disorders associated to the progression of renal disease. Thus, kidneys from rats with RMR produce less NO than normal rats and NO generation negatively correlates with markers of renal damage. The abnormality is due to a strong defect of inducible NO synthase (iNOS) content in the kidney. Recent in vitro and in vivo data have raised the possibility that excessive renal synthesis of the potent vasoconstrictor and promitogenic peptide endothelin-1 (ET-1) is a major determinant for progressive iNOS loss in the kidney of RMR rats. In contrast, uremia is associated with excessive systemic NO release, both in experimental model and in human beings. In the systemic circulation of uremic rats, as well as uremic patients, NO is formed in excessive amounts. Possible cause of the increased NO levels is higher release from systemic vessels due to the augmented expression of both iNOS and endothelial NOS. A putative cause for excessive NO production in uremia can be guanidinosuccinate, an uremic toxin that accumulates in the circulation of uremic patients and upregulates NO synthesis from cultured endothelial cells. Upregulation of systemic NO synthesis might be a defense mechanism against hypertension of uremia. On the other hand, more NO available to circulating cells may sustain the bleeding tendency, a well-known complication of uremia.</p>","PeriodicalId":18722,"journal":{"name":"Mineral and electrolyte metabolism","volume":"25 4-6","pages":"384-90"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000057479","citationCount":"29","resultStr":"{\"title\":\"Nitric oxide/L-arginine in uremia.\",\"authors\":\"S Aiello,&nbsp;M Noris,&nbsp;G Remuzzi\",\"doi\":\"10.1159/000057479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nitric oxide (NO), a gaseous free radical derived from L-arginine, is a potent modulator of vascular tone and platelet functions. A number of recent studies, both in the experimental model of renal mass reduction (RMR) in rats and in uremic patients, have raised the hypothesis that abnormalities of NO synthetic pathway could have a key role in mediating the complex hemodynamic and hemostatic disorders associated to the progression of renal disease. Thus, kidneys from rats with RMR produce less NO than normal rats and NO generation negatively correlates with markers of renal damage. The abnormality is due to a strong defect of inducible NO synthase (iNOS) content in the kidney. Recent in vitro and in vivo data have raised the possibility that excessive renal synthesis of the potent vasoconstrictor and promitogenic peptide endothelin-1 (ET-1) is a major determinant for progressive iNOS loss in the kidney of RMR rats. In contrast, uremia is associated with excessive systemic NO release, both in experimental model and in human beings. In the systemic circulation of uremic rats, as well as uremic patients, NO is formed in excessive amounts. Possible cause of the increased NO levels is higher release from systemic vessels due to the augmented expression of both iNOS and endothelial NOS. A putative cause for excessive NO production in uremia can be guanidinosuccinate, an uremic toxin that accumulates in the circulation of uremic patients and upregulates NO synthesis from cultured endothelial cells. Upregulation of systemic NO synthesis might be a defense mechanism against hypertension of uremia. On the other hand, more NO available to circulating cells may sustain the bleeding tendency, a well-known complication of uremia.</p>\",\"PeriodicalId\":18722,\"journal\":{\"name\":\"Mineral and electrolyte metabolism\",\"volume\":\"25 4-6\",\"pages\":\"384-90\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000057479\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mineral and electrolyte metabolism\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000057479\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mineral and electrolyte metabolism","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000057479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

一氧化氮(NO)是一种源自l -精氨酸的气态自由基,是血管张力和血小板功能的有效调节剂。近期在大鼠肾团块减少(RMR)实验模型和尿毒症患者中的许多研究都提出了NO合成途径异常可能在介导与肾脏疾病进展相关的复杂血流动力学和止血障碍中起关键作用的假设。因此,RMR大鼠肾脏产生的NO比正常大鼠少,并且NO的产生与肾损伤标志物呈负相关。这种异常是由于肾脏中诱导NO合成酶(iNOS)含量的强烈缺陷。最近的体外和体内数据表明,肾脏过度合成强效血管收缩剂和促生肽内皮素-1 (ET-1)可能是RMR大鼠肾脏中iNOS进行性损失的主要决定因素。相比之下,在实验模型和人类中,尿毒症与过量的全身NO释放有关。在尿毒症大鼠和尿毒症患者的体循环中,一氧化氮过量形成。一氧化氮水平升高的可能原因是由于iNOS和内皮细胞一氧化氮的表达增加,导致全身血管释放更多的一氧化氮。尿毒症中过量产生一氧化氮的一个假定原因可能是胍丁二酸盐,一种尿毒症毒素,在尿毒症患者的循环中积累,并上调培养的内皮细胞的一氧化氮合成。系统一氧化氮合成的上调可能是尿毒症高血压的防御机制。另一方面,更多的一氧化氮可用于循环细胞可能维持出血倾向,这是众所周知的尿毒症并发症。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nitric oxide/L-arginine in uremia.

Nitric oxide (NO), a gaseous free radical derived from L-arginine, is a potent modulator of vascular tone and platelet functions. A number of recent studies, both in the experimental model of renal mass reduction (RMR) in rats and in uremic patients, have raised the hypothesis that abnormalities of NO synthetic pathway could have a key role in mediating the complex hemodynamic and hemostatic disorders associated to the progression of renal disease. Thus, kidneys from rats with RMR produce less NO than normal rats and NO generation negatively correlates with markers of renal damage. The abnormality is due to a strong defect of inducible NO synthase (iNOS) content in the kidney. Recent in vitro and in vivo data have raised the possibility that excessive renal synthesis of the potent vasoconstrictor and promitogenic peptide endothelin-1 (ET-1) is a major determinant for progressive iNOS loss in the kidney of RMR rats. In contrast, uremia is associated with excessive systemic NO release, both in experimental model and in human beings. In the systemic circulation of uremic rats, as well as uremic patients, NO is formed in excessive amounts. Possible cause of the increased NO levels is higher release from systemic vessels due to the augmented expression of both iNOS and endothelial NOS. A putative cause for excessive NO production in uremia can be guanidinosuccinate, an uremic toxin that accumulates in the circulation of uremic patients and upregulates NO synthesis from cultured endothelial cells. Upregulation of systemic NO synthesis might be a defense mechanism against hypertension of uremia. On the other hand, more NO available to circulating cells may sustain the bleeding tendency, a well-known complication of uremia.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Author Index Vol. 25, 1999 Manuscript Consultants Contents Vol. 25, 1999 Subject Index Vol. 25, 1999 Subject Index Vol. 25, No. 4–6, 1999
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1