{"title":"在实验单元中重复测量回归。","authors":"A Garsd","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The most satisfactory solution to the problem of modeling a family of regressions with repeated measures in the experimental units is multivariate in nature. However, multivariate methods are difficult to follow and implement. Furthermore, by keeping the focus on the experimental unit, a family of simple univariate linear models will often parallel both the investigator's intuitive grasp of the statistical task at hand. We present two examples based on data from a study of the suckling stimulus during breastfeeding in newborn infants. We show how a family of regression lines can provide useful, if approximate, answers to the questions of interest. One example involves a regression setting proper and the other a typical case of correlation. We discuss alternative univariate models that may be useful for this type of problems.</p>","PeriodicalId":7148,"journal":{"name":"Acta physiologica, pharmacologica et therapeutica latinoamericana : organo de la Asociacion Latinoamericana de Ciencias Fisiologicas y [de] la Asociacion Latinoamericana de Farmacologia","volume":"49 2","pages":"79-86"},"PeriodicalIF":0.0000,"publicationDate":"1999-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regression with repeated measures in the experimental units.\",\"authors\":\"A Garsd\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The most satisfactory solution to the problem of modeling a family of regressions with repeated measures in the experimental units is multivariate in nature. However, multivariate methods are difficult to follow and implement. Furthermore, by keeping the focus on the experimental unit, a family of simple univariate linear models will often parallel both the investigator's intuitive grasp of the statistical task at hand. We present two examples based on data from a study of the suckling stimulus during breastfeeding in newborn infants. We show how a family of regression lines can provide useful, if approximate, answers to the questions of interest. One example involves a regression setting proper and the other a typical case of correlation. We discuss alternative univariate models that may be useful for this type of problems.</p>\",\"PeriodicalId\":7148,\"journal\":{\"name\":\"Acta physiologica, pharmacologica et therapeutica latinoamericana : organo de la Asociacion Latinoamericana de Ciencias Fisiologicas y [de] la Asociacion Latinoamericana de Farmacologia\",\"volume\":\"49 2\",\"pages\":\"79-86\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta physiologica, pharmacologica et therapeutica latinoamericana : organo de la Asociacion Latinoamericana de Ciencias Fisiologicas y [de] la Asociacion Latinoamericana de Farmacologia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta physiologica, pharmacologica et therapeutica latinoamericana : organo de la Asociacion Latinoamericana de Ciencias Fisiologicas y [de] la Asociacion Latinoamericana de Farmacologia","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对实验单元中具有重复测量的回归族建模问题的最令人满意的解决方案本质上是多元的。然而,多变量方法难以遵循和实现。此外,通过将重点放在实验单元上,一组简单的单变量线性模型将经常与研究者对手头统计任务的直觉把握平行。我们提出了两个例子,基于数据的研究,母乳喂养期间的哺乳刺激在新生儿。我们展示了一组回归线如何为感兴趣的问题提供有用的(如果是近似的)答案。一个例子涉及适当的回归设置,另一个是典型的相关情况。我们讨论可能对这类问题有用的备选单变量模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Regression with repeated measures in the experimental units.

The most satisfactory solution to the problem of modeling a family of regressions with repeated measures in the experimental units is multivariate in nature. However, multivariate methods are difficult to follow and implement. Furthermore, by keeping the focus on the experimental unit, a family of simple univariate linear models will often parallel both the investigator's intuitive grasp of the statistical task at hand. We present two examples based on data from a study of the suckling stimulus during breastfeeding in newborn infants. We show how a family of regression lines can provide useful, if approximate, answers to the questions of interest. One example involves a regression setting proper and the other a typical case of correlation. We discuss alternative univariate models that may be useful for this type of problems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of calcium deficiency on acyl-CoA synthetase activity in microsomes from various rat tissues. Influence of moderate cooling (37 degrees C-25 degrees C) on the reactivity of isolated rat tail artery. [Hemorrhagic, edema-forming, proteolytic and myonecrotic activities of viper venoms of Bothrops alternatus (Vibora de la Cruz)]. Effects of oxytocin and an oxytocin receptor antagonist on retention of a nose-poke habituation response in mice. Antispasmodic action of propinox on the isolated human gallbladder: possible mechanism of action.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1