新型甘氨酸拮抗剂的合成及药理性质

D Donati, R Di Fabio
{"title":"新型甘氨酸拮抗剂的合成及药理性质","authors":"D Donati,&nbsp;R Di Fabio","doi":"10.1016/S0031-6865(99)00059-X","DOIUrl":null,"url":null,"abstract":"<div><p>The NMDA receptor<span> is an ionotropic receptor<span><span> complex widely distributed in the central nervous system and its activation, particularly in hypoxic conditions such as stroke, traumatic head injury and hypoglycemia, results in a massive influx of calcium ions into the post-synaptic neurones, leading to cell death through the activation of several neurotoxic cascades. The NMDA receptor is a unique ionotropic receptor complex because its activation requires the simultaneous binding of glutamate and glycine and selective antagonists at the glycine binding site are endowed with a better side-effect profile than competitive </span>NMDA antagonists<span>. Then, considerable efforts have been devoted to find potent and selective ligands, resulting in the identification of several classes of glycine antagonists. The research at Glaxo Wellcome has been aimed at the identification of novel in vivo active glycine antagonists, and led to the synthesis and pharmacological characterization of a number of novel, potent and systemically active compounds belonging to different chemical classes.</span></span></span></p></div>","PeriodicalId":19830,"journal":{"name":"Pharmaceutica acta Helvetiae","volume":"74 2","pages":"Pages 239-245"},"PeriodicalIF":0.0000,"publicationDate":"2000-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0031-6865(99)00059-X","citationCount":"5","resultStr":"{\"title\":\"Synthesis and pharmacological properties of novel glycine antagonists\",\"authors\":\"D Donati,&nbsp;R Di Fabio\",\"doi\":\"10.1016/S0031-6865(99)00059-X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The NMDA receptor<span> is an ionotropic receptor<span><span> complex widely distributed in the central nervous system and its activation, particularly in hypoxic conditions such as stroke, traumatic head injury and hypoglycemia, results in a massive influx of calcium ions into the post-synaptic neurones, leading to cell death through the activation of several neurotoxic cascades. The NMDA receptor is a unique ionotropic receptor complex because its activation requires the simultaneous binding of glutamate and glycine and selective antagonists at the glycine binding site are endowed with a better side-effect profile than competitive </span>NMDA antagonists<span>. Then, considerable efforts have been devoted to find potent and selective ligands, resulting in the identification of several classes of glycine antagonists. The research at Glaxo Wellcome has been aimed at the identification of novel in vivo active glycine antagonists, and led to the synthesis and pharmacological characterization of a number of novel, potent and systemically active compounds belonging to different chemical classes.</span></span></span></p></div>\",\"PeriodicalId\":19830,\"journal\":{\"name\":\"Pharmaceutica acta Helvetiae\",\"volume\":\"74 2\",\"pages\":\"Pages 239-245\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0031-6865(99)00059-X\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutica acta Helvetiae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S003168659900059X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutica acta Helvetiae","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003168659900059X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

NMDA受体是一种广泛分布于中枢神经系统的嗜离子受体复合物,其激活,特别是在中风、颅脑外伤和低血糖等缺氧条件下,会导致大量钙离子流入突触后神经元,通过激活几种神经毒性级联反应导致细胞死亡。NMDA受体是一种独特的离子亲性受体复合物,因为它的激活需要同时结合谷氨酸和甘氨酸,而甘氨酸结合部位的选择性拮抗剂比竞争性NMDA拮抗剂具有更好的副作用。然后,大量的努力已经投入到寻找有效的和选择性的配体,导致鉴定几种类型的甘氨酸拮抗剂。gsk Wellcome的研究旨在鉴定新型体内活性甘氨酸拮抗剂,并导致了许多属于不同化学类别的新型,有效和系统活性化合物的合成和药理学表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesis and pharmacological properties of novel glycine antagonists

The NMDA receptor is an ionotropic receptor complex widely distributed in the central nervous system and its activation, particularly in hypoxic conditions such as stroke, traumatic head injury and hypoglycemia, results in a massive influx of calcium ions into the post-synaptic neurones, leading to cell death through the activation of several neurotoxic cascades. The NMDA receptor is a unique ionotropic receptor complex because its activation requires the simultaneous binding of glutamate and glycine and selective antagonists at the glycine binding site are endowed with a better side-effect profile than competitive NMDA antagonists. Then, considerable efforts have been devoted to find potent and selective ligands, resulting in the identification of several classes of glycine antagonists. The research at Glaxo Wellcome has been aimed at the identification of novel in vivo active glycine antagonists, and led to the synthesis and pharmacological characterization of a number of novel, potent and systemically active compounds belonging to different chemical classes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial Stability studies of aspirin–magaldrate double layer tablets Spectrophotometric determination of aluminium in pharmaceutical preparations by azo dyes of 1,2,4-triazole series Improvement of water solubility and in vitro dissolution rate of gliclazide by complexation with β-cyclodextrin1 Spectrofluorimetric analysis of certain 4-quinolone in pharmaceuticals and biological fluids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1