碳酸酐酶抑制剂。5-(2-氯苯基)-1,3,4-噻二唑-2-磺酰胺的金属配合物具有局部降低眼压的特性:金属离子对其药理活性的影响

F Briganti, S Tilli, G Mincione, F Mincione, L Menabuoni, C T Supuran
{"title":"碳酸酐酶抑制剂。5-(2-氯苯基)-1,3,4-噻二唑-2-磺酰胺的金属配合物具有局部降低眼压的特性:金属离子对其药理活性的影响","authors":"F Briganti,&nbsp;S Tilli,&nbsp;G Mincione,&nbsp;F Mincione,&nbsp;L Menabuoni,&nbsp;C T Supuran","doi":"10.1080/14756360009030350","DOIUrl":null,"url":null,"abstract":"<p><p>Metal complexes of a sulfonamide possessing strong carbonic anhydrase (CA) inhibitory properties, 5-(2-chlorophenyl)-1,3,4-thiadiazole-2-sulfonamide (chlorazolamide) have been obtained from the sodium salt of the sulfonamide and the following metal ions: Mg(II), Zn(II), Mn(II), Cu(II), Co(II), Ni(II), Be(II), Cd(II), Pb(II), Al(III), Fe(III) and La(III). The original sulfonamide and its complexes were assayed for the in vitro inhibition of three CA isozymes, CA I, II, and IV, some of which play a critical role in ocular fluid secretion. All these compounds (the sulfonamide and its metal complexes) behaved as powerful inhibitors against the three investigated isozymes. The parent sulfonamide possessed an extremely weak topical pressure lowering effect when administered as a 1-2% suspension into the rabbit eye, but some of its metal complexes, such as the Mg(II), Zn(II), Mn(II) and Cu(II) derivatives, lower intraocular pressure (IOP) in experimental animals very well. Ex vivo data showed a 99.5-99.9% CA II inhibition in ocular fluids and tissues of rabbits treated with these agents, proving that the observed IOP lowering is due to CA inhibition. The influence of the different metal ions upon the efficiency of the obtained complexes as pressure lowering drugs are discussed, leading to the possibility of designing more selective/potent pharmacological agents from this class.</p>","PeriodicalId":15776,"journal":{"name":"Journal of enzyme inhibition","volume":"15 2","pages":"185-200"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/14756360009030350","citationCount":"16","resultStr":"{\"title\":\"Carbonic anhydrase inhibitors. metal complexes of 5-(2-chlorophenyl)-1,3,4-thiadiazole-2-sulfonamide with topical intraocular pressure lowering properties: the influence of metal ions upon the pharmacological activity.\",\"authors\":\"F Briganti,&nbsp;S Tilli,&nbsp;G Mincione,&nbsp;F Mincione,&nbsp;L Menabuoni,&nbsp;C T Supuran\",\"doi\":\"10.1080/14756360009030350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metal complexes of a sulfonamide possessing strong carbonic anhydrase (CA) inhibitory properties, 5-(2-chlorophenyl)-1,3,4-thiadiazole-2-sulfonamide (chlorazolamide) have been obtained from the sodium salt of the sulfonamide and the following metal ions: Mg(II), Zn(II), Mn(II), Cu(II), Co(II), Ni(II), Be(II), Cd(II), Pb(II), Al(III), Fe(III) and La(III). The original sulfonamide and its complexes were assayed for the in vitro inhibition of three CA isozymes, CA I, II, and IV, some of which play a critical role in ocular fluid secretion. All these compounds (the sulfonamide and its metal complexes) behaved as powerful inhibitors against the three investigated isozymes. The parent sulfonamide possessed an extremely weak topical pressure lowering effect when administered as a 1-2% suspension into the rabbit eye, but some of its metal complexes, such as the Mg(II), Zn(II), Mn(II) and Cu(II) derivatives, lower intraocular pressure (IOP) in experimental animals very well. Ex vivo data showed a 99.5-99.9% CA II inhibition in ocular fluids and tissues of rabbits treated with these agents, proving that the observed IOP lowering is due to CA inhibition. The influence of the different metal ions upon the efficiency of the obtained complexes as pressure lowering drugs are discussed, leading to the possibility of designing more selective/potent pharmacological agents from this class.</p>\",\"PeriodicalId\":15776,\"journal\":{\"name\":\"Journal of enzyme inhibition\",\"volume\":\"15 2\",\"pages\":\"185-200\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/14756360009030350\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of enzyme inhibition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/14756360009030350\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of enzyme inhibition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/14756360009030350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

从磺胺的钠盐和以下金属离子:Mg(II)、Zn(II)、Mn(II)、Cu(II)、Co(II)、Ni(II)、Be(II)、Cd(II)、Pb(II)、Al(III)、Fe(III)和La(III)制备了具有强碳酸酐酶(CA)抑制性能的磺胺金属配合物5-(2-氯苯基)-1,3,4-噻二唑-2-磺酰胺(氯唑酰胺)。研究了原磺胺及其复合物对三种CA同工酶CA I、CA II和CA IV的体外抑制作用,其中一些酶在眼液分泌中起关键作用。所有这些化合物(磺胺及其金属配合物)都表现出对三种所研究的同工酶的有效抑制剂。母体磺胺以1-2%的悬浮液滴入兔眼时,具有极弱的局部降压作用,但其金属配合物,如Mg(II)、Zn(II)、Mn(II)和Cu(II)衍生物对实验动物的眼压(IOP)有很好的降低作用。离体数据显示,用这些药物治疗的家兔眼液和组织中CA II抑制率为99.5-99.9%,证明观察到的IOP降低是由于CA抑制所致。讨论了不同金属离子对所获得的配合物作为降压药物效率的影响,从而有可能从这类药物中设计出更具选择性/强效的药理学制剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Carbonic anhydrase inhibitors. metal complexes of 5-(2-chlorophenyl)-1,3,4-thiadiazole-2-sulfonamide with topical intraocular pressure lowering properties: the influence of metal ions upon the pharmacological activity.

Metal complexes of a sulfonamide possessing strong carbonic anhydrase (CA) inhibitory properties, 5-(2-chlorophenyl)-1,3,4-thiadiazole-2-sulfonamide (chlorazolamide) have been obtained from the sodium salt of the sulfonamide and the following metal ions: Mg(II), Zn(II), Mn(II), Cu(II), Co(II), Ni(II), Be(II), Cd(II), Pb(II), Al(III), Fe(III) and La(III). The original sulfonamide and its complexes were assayed for the in vitro inhibition of three CA isozymes, CA I, II, and IV, some of which play a critical role in ocular fluid secretion. All these compounds (the sulfonamide and its metal complexes) behaved as powerful inhibitors against the three investigated isozymes. The parent sulfonamide possessed an extremely weak topical pressure lowering effect when administered as a 1-2% suspension into the rabbit eye, but some of its metal complexes, such as the Mg(II), Zn(II), Mn(II) and Cu(II) derivatives, lower intraocular pressure (IOP) in experimental animals very well. Ex vivo data showed a 99.5-99.9% CA II inhibition in ocular fluids and tissues of rabbits treated with these agents, proving that the observed IOP lowering is due to CA inhibition. The influence of the different metal ions upon the efficiency of the obtained complexes as pressure lowering drugs are discussed, leading to the possibility of designing more selective/potent pharmacological agents from this class.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Progress Curves Analysis as an Alternative for Exploration of Activation-inhibition Phenomena in Cholinesterases Enantioselectivity of Some 1-[(Benzofuran-2-yl) phenylmethyl] imidazoles as Aromatase (P450AROM) Inhibitors Protective Effects of Suprofen and its Methyl Ester Against Inactivation of Rabbit Kidney Carbonyl Reductase by Phenylglyoxal Inhibition of Potato Polyphenol Oxidase by Anions and Activity in Various Carboxylate Buffers (pH 4.8) at Constant Ionic Strength Stable Expression of the Human 5α-Reductase Isoenzymes Type I and Type II in HEK293 Cells to Identify Dual and Selective Inhibitors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1