在发育中的有袋动物性腺中缺少SOX3与哺乳动物性别决定中的保守作用不一致。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2000-08-01
A J Pask, J L Harry, M B Renfree, J A Marshall Graves
{"title":"在发育中的有袋动物性腺中缺少SOX3与哺乳动物性别决定中的保守作用不一致。","authors":"A J Pask,&nbsp;J L Harry,&nbsp;M B Renfree,&nbsp;J A Marshall Graves","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Expression of Sox3 has been detected in the testes of humans and of developing and adult mice at the same time as Sox9 and Sry. The co-expression of these three related Sox genes in the mouse indifferent gonadal ridge led to the hypothesis that these three genes, encoding transcription factors with similar DNA target binding sites, may interact with each other in initiating testis differentiation. The location of SOX3 on the marsupial Dunnart X chromosome also makes it a candidate for the marsupial X-linked gene responsible for the SRY- and hormone-independent initiation of scrotum or mammary gland development. Here we show that although marsupial SOX3 is highly conserved at the genetic level and appears to have a conserved role in CNS development, its expression during sexual differentiation differs from that of mice and humans. SOX3 expression is absent from the developing marsupial genital ridge and from the scrotal and mammary primordia during the critical time of differentiation and throughout the time that SRY is expressed. The absence of expression in the developing gonad strongly suggests that SOX3 does not have a conserved role in mammalian sexual determination or differentiation.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2000-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Absence of SOX3 in the developing marsupial gonad is not consistent with a conserved role in mammalian sex determination.\",\"authors\":\"A J Pask,&nbsp;J L Harry,&nbsp;M B Renfree,&nbsp;J A Marshall Graves\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Expression of Sox3 has been detected in the testes of humans and of developing and adult mice at the same time as Sox9 and Sry. The co-expression of these three related Sox genes in the mouse indifferent gonadal ridge led to the hypothesis that these three genes, encoding transcription factors with similar DNA target binding sites, may interact with each other in initiating testis differentiation. The location of SOX3 on the marsupial Dunnart X chromosome also makes it a candidate for the marsupial X-linked gene responsible for the SRY- and hormone-independent initiation of scrotum or mammary gland development. Here we show that although marsupial SOX3 is highly conserved at the genetic level and appears to have a conserved role in CNS development, its expression during sexual differentiation differs from that of mice and humans. SOX3 expression is absent from the developing marsupial genital ridge and from the scrotal and mammary primordia during the critical time of differentiation and throughout the time that SRY is expressed. The absence of expression in the developing gonad strongly suggests that SOX3 does not have a conserved role in mammalian sexual determination or differentiation.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2000-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

Sox3基因与Sox9和Sry基因同时在人类、发育中的小鼠和成年小鼠的睾丸中表达。这三个相关的Sox基因在小鼠性腺嵴中的共同表达,导致了这三个基因编码具有相似DNA靶结合位点的转录因子的假设,可能在启动睾丸分化过程中相互作用。SOX3在有袋动物Dunnart X染色体上的位置也使其成为有袋动物X连锁基因的候选基因,该基因负责不依赖SRY和激素的阴囊或乳腺发育的启动。本研究表明,尽管有袋动物SOX3在遗传水平上高度保守,并且在中枢神经系统发育中似乎具有保守作用,但其在性别分化过程中的表达与小鼠和人类不同。在分化的关键时期和SRY表达的整个过程中,SOX3在发育中的有袋动物生殖器脊、阴囊和乳腺原基中缺失表达。在发育性腺中缺乏表达强烈表明SOX3在哺乳动物性别决定或分化中没有保守的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Absence of SOX3 in the developing marsupial gonad is not consistent with a conserved role in mammalian sex determination.

Expression of Sox3 has been detected in the testes of humans and of developing and adult mice at the same time as Sox9 and Sry. The co-expression of these three related Sox genes in the mouse indifferent gonadal ridge led to the hypothesis that these three genes, encoding transcription factors with similar DNA target binding sites, may interact with each other in initiating testis differentiation. The location of SOX3 on the marsupial Dunnart X chromosome also makes it a candidate for the marsupial X-linked gene responsible for the SRY- and hormone-independent initiation of scrotum or mammary gland development. Here we show that although marsupial SOX3 is highly conserved at the genetic level and appears to have a conserved role in CNS development, its expression during sexual differentiation differs from that of mice and humans. SOX3 expression is absent from the developing marsupial genital ridge and from the scrotal and mammary primordia during the critical time of differentiation and throughout the time that SRY is expressed. The absence of expression in the developing gonad strongly suggests that SOX3 does not have a conserved role in mammalian sexual determination or differentiation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1