拓扑量子物质到拓扑相变:基本原理、材料、相变物理系统和器件应用

IF 31.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Science and Engineering: R: Reports Pub Date : 2021-07-01 DOI:10.1016/j.mser.2021.100620
Md Mobarak Hossain Polash , Shahram Yalameha , Haihan Zhou , Kaveh Ahadi , Zahra Nourbakhsh , Daryoosh Vashaee
{"title":"拓扑量子物质到拓扑相变:基本原理、材料、相变物理系统和器件应用","authors":"Md Mobarak Hossain Polash ,&nbsp;Shahram Yalameha ,&nbsp;Haihan Zhou ,&nbsp;Kaveh Ahadi ,&nbsp;Zahra Nourbakhsh ,&nbsp;Daryoosh Vashaee","doi":"10.1016/j.mser.2021.100620","DOIUrl":null,"url":null,"abstract":"<div><p>The spin-orbit coupling field, an atomic magnetic field inside a Kramers’ system, or discrete symmetries can create a topological torus in the Brillouin Zone and provide protected edge or surface states, which can contain relativistic fermions, namely, Dirac and Weyl Fermions. The topology-protected helical edge or surface states and the bulk electronic energy band define different quantum or topological phases of matters, offering an excellent prospect for some unique device applications. Device applications of the quantum materials rely primarily on understanding the topological properties, their mutual conversion processes under different external stimuli, and the physical system for achieving the phase conversion. There have been tremendous efforts in finding new topological materials with exotic topological phases. However, the application of the topological properties in devices is still limited due to the slow progress in developing the physical structures for controlling the topological phase conversions. Such control systems often require extreme tuning conditions or the fabrication of complex multi-layered topological structures. This review article highlights the details of the topological phases, their conversion processes, along with their potential physical systems, and the prospective application fields. A general overview of the critical factors for topological phases and the materials properties are further discussed to provide the necessary background for the following sections.</p></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":null,"pages":null},"PeriodicalIF":31.6000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mser.2021.100620","citationCount":"22","resultStr":"{\"title\":\"Topological quantum matter to topological phase conversion: Fundamentals, materials, physical systems for phase conversions, and device applications\",\"authors\":\"Md Mobarak Hossain Polash ,&nbsp;Shahram Yalameha ,&nbsp;Haihan Zhou ,&nbsp;Kaveh Ahadi ,&nbsp;Zahra Nourbakhsh ,&nbsp;Daryoosh Vashaee\",\"doi\":\"10.1016/j.mser.2021.100620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The spin-orbit coupling field, an atomic magnetic field inside a Kramers’ system, or discrete symmetries can create a topological torus in the Brillouin Zone and provide protected edge or surface states, which can contain relativistic fermions, namely, Dirac and Weyl Fermions. The topology-protected helical edge or surface states and the bulk electronic energy band define different quantum or topological phases of matters, offering an excellent prospect for some unique device applications. Device applications of the quantum materials rely primarily on understanding the topological properties, their mutual conversion processes under different external stimuli, and the physical system for achieving the phase conversion. There have been tremendous efforts in finding new topological materials with exotic topological phases. However, the application of the topological properties in devices is still limited due to the slow progress in developing the physical structures for controlling the topological phase conversions. Such control systems often require extreme tuning conditions or the fabrication of complex multi-layered topological structures. This review article highlights the details of the topological phases, their conversion processes, along with their potential physical systems, and the prospective application fields. A general overview of the critical factors for topological phases and the materials properties are further discussed to provide the necessary background for the following sections.</p></div>\",\"PeriodicalId\":386,\"journal\":{\"name\":\"Materials Science and Engineering: R: Reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":31.6000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.mser.2021.100620\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Engineering: R: Reports\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927796X21000152\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: R: Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927796X21000152","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 22

摘要

自旋轨道耦合场、Kramers系统内部的原子磁场或离散对称可以在布里渊区创建拓扑环面,并提供受保护的边缘或表面态,其中可以包含相对论性费米子,即Dirac费米子和Weyl费米子。拓扑保护的螺旋边缘或表面态和体电子能带定义了物质的不同量子或拓扑相,为一些独特的器件应用提供了良好的前景。量子材料的器件应用主要依赖于对其拓扑性质的理解、在不同外部刺激下的相互转换过程以及实现相变的物理系统。在寻找具有奇异拓扑相的新型拓扑材料方面已经付出了巨大的努力。然而,由于控制拓扑相变的物理结构的发展缓慢,拓扑性质在器件中的应用仍然受到限制。这种控制系统通常需要极端的调谐条件或复杂的多层拓扑结构的制造。本文重点介绍了拓扑相的详细信息、拓扑相的转换过程、拓扑相的潜在物理系统以及拓扑相的应用前景。进一步讨论拓扑相和材料特性的关键因素的总体概述,为以下各节提供必要的背景知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Topological quantum matter to topological phase conversion: Fundamentals, materials, physical systems for phase conversions, and device applications

The spin-orbit coupling field, an atomic magnetic field inside a Kramers’ system, or discrete symmetries can create a topological torus in the Brillouin Zone and provide protected edge or surface states, which can contain relativistic fermions, namely, Dirac and Weyl Fermions. The topology-protected helical edge or surface states and the bulk electronic energy band define different quantum or topological phases of matters, offering an excellent prospect for some unique device applications. Device applications of the quantum materials rely primarily on understanding the topological properties, their mutual conversion processes under different external stimuli, and the physical system for achieving the phase conversion. There have been tremendous efforts in finding new topological materials with exotic topological phases. However, the application of the topological properties in devices is still limited due to the slow progress in developing the physical structures for controlling the topological phase conversions. Such control systems often require extreme tuning conditions or the fabrication of complex multi-layered topological structures. This review article highlights the details of the topological phases, their conversion processes, along with their potential physical systems, and the prospective application fields. A general overview of the critical factors for topological phases and the materials properties are further discussed to provide the necessary background for the following sections.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Science and Engineering: R: Reports
Materials Science and Engineering: R: Reports 工程技术-材料科学:综合
CiteScore
60.50
自引率
0.30%
发文量
19
审稿时长
34 days
期刊介绍: Materials Science & Engineering R: Reports is a journal that covers a wide range of topics in the field of materials science and engineering. It publishes both experimental and theoretical research papers, providing background information and critical assessments on various topics. The journal aims to publish high-quality and novel research papers and reviews. The subject areas covered by the journal include Materials Science (General), Electronic Materials, Optical Materials, and Magnetic Materials. In addition to regular issues, the journal also publishes special issues on key themes in the field of materials science, including Energy Materials, Materials for Health, Materials Discovery, Innovation for High Value Manufacturing, and Sustainable Materials development.
期刊最新文献
How can cellulosic fibers enhance adhesion in engineered wood? Dimensional upgrading of 0D silica nanospheres to 3D networking toward robust aerogels for fire resistance and low-carbon applications Materials and design strategies for the electrochemical detection of antineoplastic drugs: Progress and perspectives Editorial Board Progress in the use of MoS2-based composites for microwave absorption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1