镍诱导的牛肝谷氨酸脱氢酶的底物抑制。

S Ghobadi, M Nemat-Gorgani, S M Golabi, H R Zare, A A Moosavi-Movahedi
{"title":"镍诱导的牛肝谷氨酸脱氢酶的底物抑制。","authors":"S Ghobadi,&nbsp;M Nemat-Gorgani,&nbsp;S M Golabi,&nbsp;H R Zare,&nbsp;A A Moosavi-Movahedi","doi":"10.3109/14756360009040705","DOIUrl":null,"url":null,"abstract":"<p><p>The effects of nickel ions on reductive amination and oxidative deamination activities of bovine liver glutamate dehydrogenase (GDH) were examined kinetically by UV spectroscopy, at 27 degrees C, using 50 mM Tris, pH 7.8, containing 0.1 M NaCl. Kinetic analysis of the data obtained by varying NADH concentration indicated strong inhibition, presumably due to binding of the coenzyme to the regulatory site. In contrast, almost no inhibition was observed in the forward reaction. The fact that nickel ions have the capacity to enhance binding of NADH to the enzyme was confirmed by an electrochemical method using a modified glassy carbon electrode. Use of NADPH instead of NADH showed only a weak substrate inhibition, presumably related to lower affinity of NADPH for binding to the regulatory site. Lineweaver-Burk plots with respect to alpha-ketoglutarate and ammonium ions indicated substrate and competitive inhibition patterns in the presence of nickel ions, respectively. ADP at 0.2 mM concentration protected inhibition caused by nickel. These observations are explained in terms of formation of a nickel-NADH complex with a higher affinity for binding to the regulatory site in GDH, as compared with the situation where nickel is not present. Such effects may be important for regulation of GDH and other NADH-utilizing enzymes.</p>","PeriodicalId":15776,"journal":{"name":"Journal of enzyme inhibition","volume":"15 5","pages":"497-508"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/14756360009040705","citationCount":"1","resultStr":"{\"title\":\"Nickel-induced substrate inhibition of bovine liver glutamate dehydrogenase.\",\"authors\":\"S Ghobadi,&nbsp;M Nemat-Gorgani,&nbsp;S M Golabi,&nbsp;H R Zare,&nbsp;A A Moosavi-Movahedi\",\"doi\":\"10.3109/14756360009040705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The effects of nickel ions on reductive amination and oxidative deamination activities of bovine liver glutamate dehydrogenase (GDH) were examined kinetically by UV spectroscopy, at 27 degrees C, using 50 mM Tris, pH 7.8, containing 0.1 M NaCl. Kinetic analysis of the data obtained by varying NADH concentration indicated strong inhibition, presumably due to binding of the coenzyme to the regulatory site. In contrast, almost no inhibition was observed in the forward reaction. The fact that nickel ions have the capacity to enhance binding of NADH to the enzyme was confirmed by an electrochemical method using a modified glassy carbon electrode. Use of NADPH instead of NADH showed only a weak substrate inhibition, presumably related to lower affinity of NADPH for binding to the regulatory site. Lineweaver-Burk plots with respect to alpha-ketoglutarate and ammonium ions indicated substrate and competitive inhibition patterns in the presence of nickel ions, respectively. ADP at 0.2 mM concentration protected inhibition caused by nickel. These observations are explained in terms of formation of a nickel-NADH complex with a higher affinity for binding to the regulatory site in GDH, as compared with the situation where nickel is not present. Such effects may be important for regulation of GDH and other NADH-utilizing enzymes.</p>\",\"PeriodicalId\":15776,\"journal\":{\"name\":\"Journal of enzyme inhibition\",\"volume\":\"15 5\",\"pages\":\"497-508\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3109/14756360009040705\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of enzyme inhibition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3109/14756360009040705\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of enzyme inhibition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/14756360009040705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

采用紫外光谱技术,在27℃、50 mM Tris、pH 7.8、0.1 M NaCl条件下,研究了镍离子对牛肝谷氨酸脱氢酶(GDH)还原胺化和氧化脱胺化活性的影响。对不同NADH浓度获得的数据进行动力学分析表明,可能由于辅酶与调节位点的结合而产生了强烈的抑制作用。相反,在正向反应中几乎没有观察到抑制作用。镍离子具有增强NADH与酶结合的能力,这一事实通过使用修饰的玻碳电极的电化学方法得到了证实。使用NADPH代替NADH仅显示出微弱的底物抑制作用,可能与NADPH与调节位点结合的亲和力较低有关。关于α -酮戊二酸盐和铵离子的Lineweaver-Burk图分别显示了镍离子存在时的底物和竞争性抑制模式。ADP在0.2 mM浓度下保护镍引起的缓蚀作用。与不存在镍的情况相比,这些观察结果是根据镍- nadh复合物的形成来解释的,该复合物对GDH中的调节位点具有更高的亲和力。这种作用可能对调节GDH和其他利用nadh的酶很重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nickel-induced substrate inhibition of bovine liver glutamate dehydrogenase.

The effects of nickel ions on reductive amination and oxidative deamination activities of bovine liver glutamate dehydrogenase (GDH) were examined kinetically by UV spectroscopy, at 27 degrees C, using 50 mM Tris, pH 7.8, containing 0.1 M NaCl. Kinetic analysis of the data obtained by varying NADH concentration indicated strong inhibition, presumably due to binding of the coenzyme to the regulatory site. In contrast, almost no inhibition was observed in the forward reaction. The fact that nickel ions have the capacity to enhance binding of NADH to the enzyme was confirmed by an electrochemical method using a modified glassy carbon electrode. Use of NADPH instead of NADH showed only a weak substrate inhibition, presumably related to lower affinity of NADPH for binding to the regulatory site. Lineweaver-Burk plots with respect to alpha-ketoglutarate and ammonium ions indicated substrate and competitive inhibition patterns in the presence of nickel ions, respectively. ADP at 0.2 mM concentration protected inhibition caused by nickel. These observations are explained in terms of formation of a nickel-NADH complex with a higher affinity for binding to the regulatory site in GDH, as compared with the situation where nickel is not present. Such effects may be important for regulation of GDH and other NADH-utilizing enzymes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Progress Curves Analysis as an Alternative for Exploration of Activation-inhibition Phenomena in Cholinesterases Enantioselectivity of Some 1-[(Benzofuran-2-yl) phenylmethyl] imidazoles as Aromatase (P450AROM) Inhibitors Protective Effects of Suprofen and its Methyl Ester Against Inactivation of Rabbit Kidney Carbonyl Reductase by Phenylglyoxal Inhibition of Potato Polyphenol Oxidase by Anions and Activity in Various Carboxylate Buffers (pH 4.8) at Constant Ionic Strength Stable Expression of the Human 5α-Reductase Isoenzymes Type I and Type II in HEK293 Cells to Identify Dual and Selective Inhibitors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1