网状链霉菌调节剂FurS的dna结合特性取决于其半胱氨酸残基的氧化还原状态。

D Ortiz de Orué Lucana, H Schrempf
{"title":"网状链霉菌调节剂FurS的dna结合特性取决于其半胱氨酸残基的氧化还原状态。","authors":"D Ortiz de Orué Lucana,&nbsp;H Schrempf","doi":"10.1007/s004380000328","DOIUrl":null,"url":null,"abstract":"<p><p>Streptomyces reticuli produces a mycelium-associated enzyme (CpeB) which exhibits heme-dependent catalase and peroxidase activity, as well as heme-independent manganese-peroxidase activity. The cpeB gene does not have a promoter of its own. It is co-transcribed together with the adjacent furS gene from at least one promoter, the position of which was deduced on the basis of high-resolution S1 mapping of transcriptional start sites. Physiological and transcriptional studies suggested that FurS acts as a transcriptional repressor in the presence of Mn2+ and Fe2+ ions. A FurS fusion protein was purified, after cloning of the corresponding gene, either from Escherichia coli or Streptomyces lividans transformants. The fusion protein from each host strain can be converted into a form that exhibits reduced electrophoretic mobility following treatment with thiol-reducing agents; in the presence of diamide, in contrast, the mobility of the protein is enhanced. Additional immunological studies have shown that the native S. reticuli FurS also shows these properties, which are due to the presence of redox-sensitive cysteine residues. As revealed by gel-shift and in vitro footprinting studies, only the reduced form of the FurS fusion protein and the reduced FurS protein (partially purified from S. reticuli) is able to bind to a motif upstream of the furS gene. In the absence of first-row divalent ions, the binding site encompasses 22 bp. In the presence of Mn2+, Fe2+, Co2+, Cu2+ or Zn2+, however, the region bound is extended by 18 bp. It is noteworthy that the region upstream of the furA gene in several mycobacteria contains a very similar motif. The predicted mycobacterial FurA shares a high degree of sequence identity with FurS, and the furA gene is linked to one that encodes a catalase-peroxidase (KatG). The implications of these findings are discussed.</p>","PeriodicalId":18636,"journal":{"name":"Molecular & general genetics : MGG","volume":"264 3","pages":"341-53"},"PeriodicalIF":0.0000,"publicationDate":"2000-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s004380000328","citationCount":"49","resultStr":"{\"title\":\"The DNA-binding characteristics of the Streptomyces reticuli regulator FurS depend on the redox state of its cysteine residues.\",\"authors\":\"D Ortiz de Orué Lucana,&nbsp;H Schrempf\",\"doi\":\"10.1007/s004380000328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Streptomyces reticuli produces a mycelium-associated enzyme (CpeB) which exhibits heme-dependent catalase and peroxidase activity, as well as heme-independent manganese-peroxidase activity. The cpeB gene does not have a promoter of its own. It is co-transcribed together with the adjacent furS gene from at least one promoter, the position of which was deduced on the basis of high-resolution S1 mapping of transcriptional start sites. Physiological and transcriptional studies suggested that FurS acts as a transcriptional repressor in the presence of Mn2+ and Fe2+ ions. A FurS fusion protein was purified, after cloning of the corresponding gene, either from Escherichia coli or Streptomyces lividans transformants. The fusion protein from each host strain can be converted into a form that exhibits reduced electrophoretic mobility following treatment with thiol-reducing agents; in the presence of diamide, in contrast, the mobility of the protein is enhanced. Additional immunological studies have shown that the native S. reticuli FurS also shows these properties, which are due to the presence of redox-sensitive cysteine residues. As revealed by gel-shift and in vitro footprinting studies, only the reduced form of the FurS fusion protein and the reduced FurS protein (partially purified from S. reticuli) is able to bind to a motif upstream of the furS gene. In the absence of first-row divalent ions, the binding site encompasses 22 bp. In the presence of Mn2+, Fe2+, Co2+, Cu2+ or Zn2+, however, the region bound is extended by 18 bp. It is noteworthy that the region upstream of the furA gene in several mycobacteria contains a very similar motif. The predicted mycobacterial FurA shares a high degree of sequence identity with FurS, and the furA gene is linked to one that encodes a catalase-peroxidase (KatG). The implications of these findings are discussed.</p>\",\"PeriodicalId\":18636,\"journal\":{\"name\":\"Molecular & general genetics : MGG\",\"volume\":\"264 3\",\"pages\":\"341-53\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s004380000328\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular & general genetics : MGG\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s004380000328\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & general genetics : MGG","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s004380000328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

摘要

网状链霉菌产生一种菌丝相关酶(CpeB),该酶具有血红素依赖性过氧化氢酶和过氧化物酶活性,以及血红素非依赖性锰过氧化物酶活性。cpeB基因本身没有启动子。它与来自至少一个启动子的相邻furS基因共转录,该启动子的位置是根据转录起始位点的高分辨率S1图谱推断出来的。生理和转录研究表明,FurS在Mn2+和Fe2+离子存在下起转录抑制作用。从大肠杆菌或lividans转化链霉菌中克隆相应基因后,纯化了FurS融合蛋白。来自每个宿主菌株的融合蛋白可以在巯基还原剂处理后转化为表现出降低的电泳迁移率的形式;相反,在二胺的存在下,蛋白质的流动性得到增强。另外的免疫学研究表明,本地S. reticuli FurS也显示出这些特性,这是由于存在氧化还原敏感的半胱氨酸残基。凝胶转移和体外足迹研究显示,只有FurS融合蛋白的还原形式和还原的FurS蛋白(部分从S. reticuli中纯化)能够与FurS基因上游的基元结合。在没有第一排二价离子的情况下,结合位点包含22bp。而在Mn2+、Fe2+、Co2+、Cu2+或Zn2+的存在下,结合区延长了18bp。值得注意的是,在一些分枝杆菌中,furA基因上游的区域包含一个非常相似的基序。预测的分枝杆菌FurA与FurS具有高度的序列一致性,并且FurA基因与编码过氧化氢酶过氧化物酶(KatG)的基因相关。讨论了这些发现的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The DNA-binding characteristics of the Streptomyces reticuli regulator FurS depend on the redox state of its cysteine residues.

Streptomyces reticuli produces a mycelium-associated enzyme (CpeB) which exhibits heme-dependent catalase and peroxidase activity, as well as heme-independent manganese-peroxidase activity. The cpeB gene does not have a promoter of its own. It is co-transcribed together with the adjacent furS gene from at least one promoter, the position of which was deduced on the basis of high-resolution S1 mapping of transcriptional start sites. Physiological and transcriptional studies suggested that FurS acts as a transcriptional repressor in the presence of Mn2+ and Fe2+ ions. A FurS fusion protein was purified, after cloning of the corresponding gene, either from Escherichia coli or Streptomyces lividans transformants. The fusion protein from each host strain can be converted into a form that exhibits reduced electrophoretic mobility following treatment with thiol-reducing agents; in the presence of diamide, in contrast, the mobility of the protein is enhanced. Additional immunological studies have shown that the native S. reticuli FurS also shows these properties, which are due to the presence of redox-sensitive cysteine residues. As revealed by gel-shift and in vitro footprinting studies, only the reduced form of the FurS fusion protein and the reduced FurS protein (partially purified from S. reticuli) is able to bind to a motif upstream of the furS gene. In the absence of first-row divalent ions, the binding site encompasses 22 bp. In the presence of Mn2+, Fe2+, Co2+, Cu2+ or Zn2+, however, the region bound is extended by 18 bp. It is noteworthy that the region upstream of the furA gene in several mycobacteria contains a very similar motif. The predicted mycobacterial FurA shares a high degree of sequence identity with FurS, and the furA gene is linked to one that encodes a catalase-peroxidase (KatG). The implications of these findings are discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simultaneous reduction of the activity of two related enzymes, involved in early steps of the polyamine biosynthetic pathway, by a single antisense cDNA in transgenic rice. Analysis of genes involved in 6-deoxyhexose biosynthesis and transfer in Saccharopolyspora erythraea. Identification of the initiation codon for the atpB gene in Chlamydomonas chloroplasts excludes translation of a precursor form of the beta subunit of the ATP synthase. A novel member of the Swi6p family of fission yeast chromo domain-containing proteins associates with the centromere in vivo and affects chromosome segregation. Phylogenetic analysis of the functional domains of mariner-like element (MLE) transposases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1