V C Henrich, M E Vogtli, C Antoniewski, M Spindler-Barth, S Przibilla, M Noureddine, M Lezzi
{"title":"果蝇和手蝇嵌合超囊基因的发育效应。","authors":"V C Henrich, M E Vogtli, C Antoniewski, M Spindler-Barth, S Przibilla, M Noureddine, M Lezzi","doi":"10.1002/1526-968x(200011/12)28:3/4<125::aid-gene50>3.3.co;2-j","DOIUrl":null,"url":null,"abstract":"<p><p>The ultraspiracle (usp) gene encodes a nuclear receptor that forms a heterodimer with the ecdysone receptor (EcR) to mediate transcriptional responses to the insect steroid hormone, 20-hydroxyecdysone (20HE). The responses ultimately elicit changes associated with molting and metamorphosis. Although Ultraspiracle (USP) is required at several developmental times, it is unclear whether USP plays stage-specific roles in Drosophila. A chimeric transgene (d/cusp), produced by replacing the ligand-binding domain (LBD) of Drosophila USP with the equivalent domain from another Diptera, Chironomus tentans, was tested for its ability to rescue Drosophila usp mutants from early larval lethality. A single copy of the d/cusp was sufficient to rescue transformants from several lines through larval development but they died suddenly during the late third instar. Additional doses of d/cusp were required to allow survival through the adult stage, but they did not restore a normal prepupal contraction. Thus, the arrest at the onset of metamorphosis apparently is caused by the impaired ability of the chimeric USP to mediate a stage-specific function associated with the LBD.</p>","PeriodicalId":48923,"journal":{"name":"Genesis","volume":"28 3-4","pages":"125-33"},"PeriodicalIF":1.5000,"publicationDate":"2000-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Developmental effects of a chimeric ultraspiracle gene derived from Drosophila and Chironomus.\",\"authors\":\"V C Henrich, M E Vogtli, C Antoniewski, M Spindler-Barth, S Przibilla, M Noureddine, M Lezzi\",\"doi\":\"10.1002/1526-968x(200011/12)28:3/4<125::aid-gene50>3.3.co;2-j\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The ultraspiracle (usp) gene encodes a nuclear receptor that forms a heterodimer with the ecdysone receptor (EcR) to mediate transcriptional responses to the insect steroid hormone, 20-hydroxyecdysone (20HE). The responses ultimately elicit changes associated with molting and metamorphosis. Although Ultraspiracle (USP) is required at several developmental times, it is unclear whether USP plays stage-specific roles in Drosophila. A chimeric transgene (d/cusp), produced by replacing the ligand-binding domain (LBD) of Drosophila USP with the equivalent domain from another Diptera, Chironomus tentans, was tested for its ability to rescue Drosophila usp mutants from early larval lethality. A single copy of the d/cusp was sufficient to rescue transformants from several lines through larval development but they died suddenly during the late third instar. Additional doses of d/cusp were required to allow survival through the adult stage, but they did not restore a normal prepupal contraction. Thus, the arrest at the onset of metamorphosis apparently is caused by the impaired ability of the chimeric USP to mediate a stage-specific function associated with the LBD.</p>\",\"PeriodicalId\":48923,\"journal\":{\"name\":\"Genesis\",\"volume\":\"28 3-4\",\"pages\":\"125-33\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2000-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genesis\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/1526-968x(200011/12)28:3/4<125::aid-gene50>3.3.co;2-j\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genesis","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/1526-968x(200011/12)28:3/4<125::aid-gene50>3.3.co;2-j","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Developmental effects of a chimeric ultraspiracle gene derived from Drosophila and Chironomus.
The ultraspiracle (usp) gene encodes a nuclear receptor that forms a heterodimer with the ecdysone receptor (EcR) to mediate transcriptional responses to the insect steroid hormone, 20-hydroxyecdysone (20HE). The responses ultimately elicit changes associated with molting and metamorphosis. Although Ultraspiracle (USP) is required at several developmental times, it is unclear whether USP plays stage-specific roles in Drosophila. A chimeric transgene (d/cusp), produced by replacing the ligand-binding domain (LBD) of Drosophila USP with the equivalent domain from another Diptera, Chironomus tentans, was tested for its ability to rescue Drosophila usp mutants from early larval lethality. A single copy of the d/cusp was sufficient to rescue transformants from several lines through larval development but they died suddenly during the late third instar. Additional doses of d/cusp were required to allow survival through the adult stage, but they did not restore a normal prepupal contraction. Thus, the arrest at the onset of metamorphosis apparently is caused by the impaired ability of the chimeric USP to mediate a stage-specific function associated with the LBD.
期刊介绍:
As of January 2000, Developmental Genetics was renamed and relaunched as genesis: The Journal of Genetics and Development, with a new scope and Editorial Board. The journal focuses on work that addresses the genetics of development and the fundamental mechanisms of embryological processes in animals and plants. With increased awareness of the interplay between genetics and evolutionary change, particularly during developmental processes, we encourage submission of manuscripts from all ecological niches. The expanded numbers of genomes for which sequencing is being completed will facilitate genetic and genomic examination of developmental issues, even if the model system does not fit the “classical genetic” mold. Therefore, we encourage submission of manuscripts from all species. Other areas of particular interest include: 1) the roles of epigenetics, microRNAs and environment on developmental processes; 2) genome-wide studies; 3) novel imaging techniques for the study of gene expression and cellular function; 4) comparative genetics and genomics and 5) animal models of human genetic and developmental disorders.
genesis presents reviews, full research articles, short research letters, and state-of-the-art technology reports that promote an understanding of the function of genes and the roles they play in complex developmental processes.