寄生曲霉菌丝生长和产孢相关基因fluP的分离与分析。

R Zhou, R Rasooly, J E Linz
{"title":"寄生曲霉菌丝生长和产孢相关基因fluP的分离与分析。","authors":"R Zhou,&nbsp;R Rasooly,&nbsp;J E Linz","doi":"10.1007/s004380000335","DOIUrl":null,"url":null,"abstract":"<p><p>Aflatoxins (AF) are polyketide-derived mycotoxins that frequently contaminate food and feed crops, causing health risks to animals and humans. The fluP gene was cloned by screening an Aspergillus parasiticus genomic DNA library with a cDNA probe encoding part of a polyketide synthase (PKS), the 6-methylsalicylic acid synthase (MSAS) from Penicillium patulum. FluP was hypothesized to function as a PKS in AF biosynthesis. The predicted amino acid sequence of FluP demonstrated a high degree of identity to MSAS (55%), moderate identity to another fungal PKS protein encoded by wA from A. nidulans (22%) and low identity (<5%) to fungal fatty acid synthase (FAS) proteins. Disruption of fluP in A. parasiticus resulted in the loss of fluP transcript, a 3- to 4-fold reduction in hyphal growth rate, the appearance of a fluffy, cotton-like hyphal morphology, reduction or elimination of asexual spores and spore-bearing structures, and a twofold reduction in aflatoxin accumulation. Removal of selective pressure on fluP knockout transformants resulted in frequent reversion (10%) to the wild-type genotype and phenotype, establishing a direct link between gene disruption and the associated phenotype. The data suggest that fluP encodes a novel PKS associated with hyphal growth and cell development (sporulation), whose activity indirectly influences aflatoxin accumulation in A. parasiticus.</p>","PeriodicalId":18636,"journal":{"name":"Molecular & general genetics : MGG","volume":"264 4","pages":"514-20"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s004380000335","citationCount":"26","resultStr":"{\"title\":\"Isolation and analysis of fluP, a gene associated with hyphal growth and sporulation in Aspergillus parasiticus.\",\"authors\":\"R Zhou,&nbsp;R Rasooly,&nbsp;J E Linz\",\"doi\":\"10.1007/s004380000335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aflatoxins (AF) are polyketide-derived mycotoxins that frequently contaminate food and feed crops, causing health risks to animals and humans. The fluP gene was cloned by screening an Aspergillus parasiticus genomic DNA library with a cDNA probe encoding part of a polyketide synthase (PKS), the 6-methylsalicylic acid synthase (MSAS) from Penicillium patulum. FluP was hypothesized to function as a PKS in AF biosynthesis. The predicted amino acid sequence of FluP demonstrated a high degree of identity to MSAS (55%), moderate identity to another fungal PKS protein encoded by wA from A. nidulans (22%) and low identity (<5%) to fungal fatty acid synthase (FAS) proteins. Disruption of fluP in A. parasiticus resulted in the loss of fluP transcript, a 3- to 4-fold reduction in hyphal growth rate, the appearance of a fluffy, cotton-like hyphal morphology, reduction or elimination of asexual spores and spore-bearing structures, and a twofold reduction in aflatoxin accumulation. Removal of selective pressure on fluP knockout transformants resulted in frequent reversion (10%) to the wild-type genotype and phenotype, establishing a direct link between gene disruption and the associated phenotype. The data suggest that fluP encodes a novel PKS associated with hyphal growth and cell development (sporulation), whose activity indirectly influences aflatoxin accumulation in A. parasiticus.</p>\",\"PeriodicalId\":18636,\"journal\":{\"name\":\"Molecular & general genetics : MGG\",\"volume\":\"264 4\",\"pages\":\"514-20\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s004380000335\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular & general genetics : MGG\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s004380000335\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & general genetics : MGG","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s004380000335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

黄曲霉毒素是一种聚酮衍生的真菌毒素,经常污染食品和饲料作物,对动物和人类造成健康风险。用cDNA探针对寄生曲霉基因组DNA文库进行筛选,获得了fluP基因。cDNA探针编码帕托青霉的6-甲基水杨酸合成酶(MSAS)的部分片段。假设FluP在AF生物合成中作为PKS起作用。预测的FluP氨基酸序列与MSAS高度同源(55%),与另一种真菌PKS蛋白同源(22%),低同源(22%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Isolation and analysis of fluP, a gene associated with hyphal growth and sporulation in Aspergillus parasiticus.

Aflatoxins (AF) are polyketide-derived mycotoxins that frequently contaminate food and feed crops, causing health risks to animals and humans. The fluP gene was cloned by screening an Aspergillus parasiticus genomic DNA library with a cDNA probe encoding part of a polyketide synthase (PKS), the 6-methylsalicylic acid synthase (MSAS) from Penicillium patulum. FluP was hypothesized to function as a PKS in AF biosynthesis. The predicted amino acid sequence of FluP demonstrated a high degree of identity to MSAS (55%), moderate identity to another fungal PKS protein encoded by wA from A. nidulans (22%) and low identity (<5%) to fungal fatty acid synthase (FAS) proteins. Disruption of fluP in A. parasiticus resulted in the loss of fluP transcript, a 3- to 4-fold reduction in hyphal growth rate, the appearance of a fluffy, cotton-like hyphal morphology, reduction or elimination of asexual spores and spore-bearing structures, and a twofold reduction in aflatoxin accumulation. Removal of selective pressure on fluP knockout transformants resulted in frequent reversion (10%) to the wild-type genotype and phenotype, establishing a direct link between gene disruption and the associated phenotype. The data suggest that fluP encodes a novel PKS associated with hyphal growth and cell development (sporulation), whose activity indirectly influences aflatoxin accumulation in A. parasiticus.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simultaneous reduction of the activity of two related enzymes, involved in early steps of the polyamine biosynthetic pathway, by a single antisense cDNA in transgenic rice. Analysis of genes involved in 6-deoxyhexose biosynthesis and transfer in Saccharopolyspora erythraea. Identification of the initiation codon for the atpB gene in Chlamydomonas chloroplasts excludes translation of a precursor form of the beta subunit of the ATP synthase. A novel member of the Swi6p family of fission yeast chromo domain-containing proteins associates with the centromere in vivo and affects chromosome segregation. Phylogenetic analysis of the functional domains of mariner-like element (MLE) transposases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1