巴西氮螺旋藻合成吲哚-3-乙酸的色氨酸依赖途径不同调控的生理证据。

R Carreño-Lopez, N Campos-Reales, C Elmerich, B E Baca
{"title":"巴西氮螺旋藻合成吲哚-3-乙酸的色氨酸依赖途径不同调控的生理证据。","authors":"R Carreño-Lopez,&nbsp;N Campos-Reales,&nbsp;C Elmerich,&nbsp;B E Baca","doi":"10.1007/s004380000340","DOIUrl":null,"url":null,"abstract":"<p><p>Disruption of ipdC, a gene involved in indole-3-acetic acid (IAA) production by the indole pyruvate pathway in Azospirillum brasilense Sp7, resulted in a mutant strain that was not impaired in IAA production with lactate or pyruvate as the carbon source. A tryptophan auxotroph that is unable to convert indole to tryptophan produced IAA if tryptophan was present but did not synthesise IAA from indole. Similar results were obtained for a mutant strain with additional mutations in the genes ipdC and trpD. This suggests the existence of an alternative Trp-dependent route for IAA synthesis. On gluconate as a carbon source, IAA production by the ipdC mutant was inhibited, suggesting that the alternative route is regulated by catabolite repression. Using permeabilised cells we observed the enzymatic conversion of tryptamine and indole-3-acetonitrile to IAA, both in the wild-type and in the ipdC mutant. IAA production from tryptamine was strongly decreased when gluconate was the carbon source.</p>","PeriodicalId":18636,"journal":{"name":"Molecular & general genetics : MGG","volume":"264 4","pages":"521-30"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s004380000340","citationCount":"116","resultStr":"{\"title\":\"Physiological evidence for differently regulated tryptophan-dependent pathways for indole-3-acetic acid synthesis in Azospirillum brasilense.\",\"authors\":\"R Carreño-Lopez,&nbsp;N Campos-Reales,&nbsp;C Elmerich,&nbsp;B E Baca\",\"doi\":\"10.1007/s004380000340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Disruption of ipdC, a gene involved in indole-3-acetic acid (IAA) production by the indole pyruvate pathway in Azospirillum brasilense Sp7, resulted in a mutant strain that was not impaired in IAA production with lactate or pyruvate as the carbon source. A tryptophan auxotroph that is unable to convert indole to tryptophan produced IAA if tryptophan was present but did not synthesise IAA from indole. Similar results were obtained for a mutant strain with additional mutations in the genes ipdC and trpD. This suggests the existence of an alternative Trp-dependent route for IAA synthesis. On gluconate as a carbon source, IAA production by the ipdC mutant was inhibited, suggesting that the alternative route is regulated by catabolite repression. Using permeabilised cells we observed the enzymatic conversion of tryptamine and indole-3-acetonitrile to IAA, both in the wild-type and in the ipdC mutant. IAA production from tryptamine was strongly decreased when gluconate was the carbon source.</p>\",\"PeriodicalId\":18636,\"journal\":{\"name\":\"Molecular & general genetics : MGG\",\"volume\":\"264 4\",\"pages\":\"521-30\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s004380000340\",\"citationCount\":\"116\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular & general genetics : MGG\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s004380000340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & general genetics : MGG","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s004380000340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 116

摘要

在巴西氮螺旋菌(Azospirillum brasilense) Sp7中,通过吲哚丙酮酸途径产生吲哚-3-乙酸(IAA)的基因ipdC被破坏,导致突变菌株在乳酸或丙酮酸作为碳源时不影响IAA的产生。色氨酸营养不良细胞不能将吲哚转化为色氨酸,如果色氨酸存在,则产生IAA,但不能从吲哚合成IAA。在ipdC和trpD基因突变的突变株中获得了类似的结果。这表明存在另一种依赖色氨酸的IAA合成途径。以葡萄糖为碳源,ipdC突变体的IAA产生受到抑制,表明这一替代途径受到分解代谢物抑制的调节。通过渗透细胞,我们观察到在野生型和ipdC突变体中,色胺和吲哚-3-乙腈酶转化为IAA。当葡萄糖酸为碳源时,色胺的IAA产量明显下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Physiological evidence for differently regulated tryptophan-dependent pathways for indole-3-acetic acid synthesis in Azospirillum brasilense.

Disruption of ipdC, a gene involved in indole-3-acetic acid (IAA) production by the indole pyruvate pathway in Azospirillum brasilense Sp7, resulted in a mutant strain that was not impaired in IAA production with lactate or pyruvate as the carbon source. A tryptophan auxotroph that is unable to convert indole to tryptophan produced IAA if tryptophan was present but did not synthesise IAA from indole. Similar results were obtained for a mutant strain with additional mutations in the genes ipdC and trpD. This suggests the existence of an alternative Trp-dependent route for IAA synthesis. On gluconate as a carbon source, IAA production by the ipdC mutant was inhibited, suggesting that the alternative route is regulated by catabolite repression. Using permeabilised cells we observed the enzymatic conversion of tryptamine and indole-3-acetonitrile to IAA, both in the wild-type and in the ipdC mutant. IAA production from tryptamine was strongly decreased when gluconate was the carbon source.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simultaneous reduction of the activity of two related enzymes, involved in early steps of the polyamine biosynthetic pathway, by a single antisense cDNA in transgenic rice. Analysis of genes involved in 6-deoxyhexose biosynthesis and transfer in Saccharopolyspora erythraea. Identification of the initiation codon for the atpB gene in Chlamydomonas chloroplasts excludes translation of a precursor form of the beta subunit of the ATP synthase. A novel member of the Swi6p family of fission yeast chromo domain-containing proteins associates with the centromere in vivo and affects chromosome segregation. Phylogenetic analysis of the functional domains of mariner-like element (MLE) transposases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1