Paula F G de Sa, Christina Robb, Elmo Resende, Patrick McCarthy, Sze C Yang, Phyllis R Brown, Joel A Dain
{"title":"用双链聚苯胺涂层毛细管对n -乙酰赖氨酸与还原糖形成的晚期糖基化终产物进行毛细管电泳分离。","authors":"Paula F G de Sa, Christina Robb, Elmo Resende, Patrick McCarthy, Sze C Yang, Phyllis R Brown, Joel A Dain","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Capillary electrophoresis using a capillary coated with a double-strand coating of polyaniline:poly(methyacrylate-co-acrylic acid) (PAN:P[MA-AAI) was used to separate advanced glycation endproducts (AGEs) formed at 37 degrees C from model systems containing either glucose (Glc), fructose (Fru), or glyceraldehyde (GA) and N-alpha-acetyl-L-lysine (NALys). The presence of the P(MA-AA) as a second strand in the polymer allows the maintenance of the conductive state of the PAN at a wide pH range. Effects of buffer pH and coating concentration on the electroosmotic flow (EOF) were investigated. More AGE species can be detected for the GA/NALys mixtures using this coated capillary than upon an uncoated capillary. The coating procedure is simple and the stability of the coated capillary is good.</p>","PeriodicalId":15060,"journal":{"name":"Journal of capillary electrophoresis and microchip technology","volume":"7 3-4","pages":"61-5"},"PeriodicalIF":0.0000,"publicationDate":"2002-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Capillary electrophoretic separation by double-strand polyaniline-coate capillaries of the advanced glycation endproducts formed from N-alpha-acetyl-L-lysine with reducing sugars.\",\"authors\":\"Paula F G de Sa, Christina Robb, Elmo Resende, Patrick McCarthy, Sze C Yang, Phyllis R Brown, Joel A Dain\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Capillary electrophoresis using a capillary coated with a double-strand coating of polyaniline:poly(methyacrylate-co-acrylic acid) (PAN:P[MA-AAI) was used to separate advanced glycation endproducts (AGEs) formed at 37 degrees C from model systems containing either glucose (Glc), fructose (Fru), or glyceraldehyde (GA) and N-alpha-acetyl-L-lysine (NALys). The presence of the P(MA-AA) as a second strand in the polymer allows the maintenance of the conductive state of the PAN at a wide pH range. Effects of buffer pH and coating concentration on the electroosmotic flow (EOF) were investigated. More AGE species can be detected for the GA/NALys mixtures using this coated capillary than upon an uncoated capillary. The coating procedure is simple and the stability of the coated capillary is good.</p>\",\"PeriodicalId\":15060,\"journal\":{\"name\":\"Journal of capillary electrophoresis and microchip technology\",\"volume\":\"7 3-4\",\"pages\":\"61-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of capillary electrophoresis and microchip technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of capillary electrophoresis and microchip technology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Capillary electrophoretic separation by double-strand polyaniline-coate capillaries of the advanced glycation endproducts formed from N-alpha-acetyl-L-lysine with reducing sugars.
Capillary electrophoresis using a capillary coated with a double-strand coating of polyaniline:poly(methyacrylate-co-acrylic acid) (PAN:P[MA-AAI) was used to separate advanced glycation endproducts (AGEs) formed at 37 degrees C from model systems containing either glucose (Glc), fructose (Fru), or glyceraldehyde (GA) and N-alpha-acetyl-L-lysine (NALys). The presence of the P(MA-AA) as a second strand in the polymer allows the maintenance of the conductive state of the PAN at a wide pH range. Effects of buffer pH and coating concentration on the electroosmotic flow (EOF) were investigated. More AGE species can be detected for the GA/NALys mixtures using this coated capillary than upon an uncoated capillary. The coating procedure is simple and the stability of the coated capillary is good.