Rico Berner , Thilo Gross , Christian Kuehn , Jürgen Kurths , Serhiy Yanchuk
{"title":"自适应动态网络","authors":"Rico Berner , Thilo Gross , Christian Kuehn , Jürgen Kurths , Serhiy Yanchuk","doi":"10.1016/j.physrep.2023.08.001","DOIUrl":null,"url":null,"abstract":"<div><p>It is a fundamental challenge to understand how the function of a network is related to its structural organization. Adaptive dynamical networks represent a broad class of systems that can change their connectivity over time depending on their dynamical state. The most important feature of such systems is that their function depends on their structure and vice versa. While the properties of static<span> networks have been extensively investigated in the past, the study of adaptive networks is much more challenging. Moreover, adaptive dynamical networks are of tremendous importance for various application fields, in particular, for the models for neuronal synaptic plasticity, adaptive networks in chemical, epidemic, biological, transport, and social systems, to name a few. In this review, we provide a detailed description of adaptive dynamical networks, show their applications in various areas of research, highlight their dynamical features and describe the arising dynamical phenomena, and give an overview of the available mathematical methods developed for understanding adaptive dynamical networks.</span></p></div>","PeriodicalId":404,"journal":{"name":"Physics Reports","volume":"1031 ","pages":"Pages 1-59"},"PeriodicalIF":23.9000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Adaptive dynamical networks\",\"authors\":\"Rico Berner , Thilo Gross , Christian Kuehn , Jürgen Kurths , Serhiy Yanchuk\",\"doi\":\"10.1016/j.physrep.2023.08.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It is a fundamental challenge to understand how the function of a network is related to its structural organization. Adaptive dynamical networks represent a broad class of systems that can change their connectivity over time depending on their dynamical state. The most important feature of such systems is that their function depends on their structure and vice versa. While the properties of static<span> networks have been extensively investigated in the past, the study of adaptive networks is much more challenging. Moreover, adaptive dynamical networks are of tremendous importance for various application fields, in particular, for the models for neuronal synaptic plasticity, adaptive networks in chemical, epidemic, biological, transport, and social systems, to name a few. In this review, we provide a detailed description of adaptive dynamical networks, show their applications in various areas of research, highlight their dynamical features and describe the arising dynamical phenomena, and give an overview of the available mathematical methods developed for understanding adaptive dynamical networks.</span></p></div>\",\"PeriodicalId\":404,\"journal\":{\"name\":\"Physics Reports\",\"volume\":\"1031 \",\"pages\":\"Pages 1-59\"},\"PeriodicalIF\":23.9000,\"publicationDate\":\"2023-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Reports\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0370157323002685\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Reports","FirstCategoryId":"4","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0370157323002685","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
It is a fundamental challenge to understand how the function of a network is related to its structural organization. Adaptive dynamical networks represent a broad class of systems that can change their connectivity over time depending on their dynamical state. The most important feature of such systems is that their function depends on their structure and vice versa. While the properties of static networks have been extensively investigated in the past, the study of adaptive networks is much more challenging. Moreover, adaptive dynamical networks are of tremendous importance for various application fields, in particular, for the models for neuronal synaptic plasticity, adaptive networks in chemical, epidemic, biological, transport, and social systems, to name a few. In this review, we provide a detailed description of adaptive dynamical networks, show their applications in various areas of research, highlight their dynamical features and describe the arising dynamical phenomena, and give an overview of the available mathematical methods developed for understanding adaptive dynamical networks.
期刊介绍:
Physics Reports keeps the active physicist up-to-date on developments in a wide range of topics by publishing timely reviews which are more extensive than just literature surveys but normally less than a full monograph. Each report deals with one specific subject and is generally published in a separate volume. These reviews are specialist in nature but contain enough introductory material to make the main points intelligible to a non-specialist. The reader will not only be able to distinguish important developments and trends in physics but will also find a sufficient number of references to the original literature.