{"title":"新型DNA烷化剂VNP40101M在大鼠体内的药代动力学、质量平衡和组织分布。","authors":"John Mao, Yang Xu, Diana Wu, Bijan Almassain","doi":"10.1208/ps040424","DOIUrl":null,"url":null,"abstract":"<p><p>VNP40101M (1,2-Bis(methylsulfonyl)-1-(2-chloroethyl)-2-[(2 methylamino)carbonyl] hydrazine), a novel DNA alkylating agent, is currently under clinical development for the treatment of cancer in Phase I clinical trials. This study investigated the pharmacokinetics, mass balance, and tissue distribution of [14C]-VNP40101M in rats following a single intravenous dose of 10 mg/kg. After 7 days, the total recovery of radioactivity was 85% for males and 79% for females. Most of the radioactivity was eliminated within 48 hours through urine (70%), with less excreted in feces (6%). Tissue contained relatively high radioactive residues with the highest concentrations in kidneys, liver, lung, and spleen. After 7 days, tissue still contained 9% of the dose. At both 5 minutes and 1 hour post-dose, brain contained relatively high radioactivity (5.9 and 3.3 micro g equivalence/g and 50% and 30% of the blood concentration, respectively), suggesting that VNP40101M penetrated the blood-brain barrier. The elimination half-life of VNP40101M was approximately 20 minutes, the peak plasma concentration (Cmax) averaged 11.3 micro g/mL, the volume of distribution (Vss) averaged 0.91 L/kg, and the total body clearance (Cl) averaged 33.5 mL/min/kg. The metabolite profile in urine was complex, indicating VNP40101M was extensively metabolized. There were no apparent sex differences in pharmacokinetic parameters of VNP40101M in the rat.</p>","PeriodicalId":6918,"journal":{"name":"AAPS PharmSci","volume":"4 4","pages":"E24"},"PeriodicalIF":0.0000,"publicationDate":"2002-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1208/ps040424","citationCount":"15","resultStr":"{\"title\":\"Pharmacokinetics, mass balance, and tissue distribution of a novel DNA alkylating agent, VNP40101M, in rat.\",\"authors\":\"John Mao, Yang Xu, Diana Wu, Bijan Almassain\",\"doi\":\"10.1208/ps040424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>VNP40101M (1,2-Bis(methylsulfonyl)-1-(2-chloroethyl)-2-[(2 methylamino)carbonyl] hydrazine), a novel DNA alkylating agent, is currently under clinical development for the treatment of cancer in Phase I clinical trials. This study investigated the pharmacokinetics, mass balance, and tissue distribution of [14C]-VNP40101M in rats following a single intravenous dose of 10 mg/kg. After 7 days, the total recovery of radioactivity was 85% for males and 79% for females. Most of the radioactivity was eliminated within 48 hours through urine (70%), with less excreted in feces (6%). Tissue contained relatively high radioactive residues with the highest concentrations in kidneys, liver, lung, and spleen. After 7 days, tissue still contained 9% of the dose. At both 5 minutes and 1 hour post-dose, brain contained relatively high radioactivity (5.9 and 3.3 micro g equivalence/g and 50% and 30% of the blood concentration, respectively), suggesting that VNP40101M penetrated the blood-brain barrier. The elimination half-life of VNP40101M was approximately 20 minutes, the peak plasma concentration (Cmax) averaged 11.3 micro g/mL, the volume of distribution (Vss) averaged 0.91 L/kg, and the total body clearance (Cl) averaged 33.5 mL/min/kg. The metabolite profile in urine was complex, indicating VNP40101M was extensively metabolized. There were no apparent sex differences in pharmacokinetic parameters of VNP40101M in the rat.</p>\",\"PeriodicalId\":6918,\"journal\":{\"name\":\"AAPS PharmSci\",\"volume\":\"4 4\",\"pages\":\"E24\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1208/ps040424\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AAPS PharmSci\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1208/ps040424\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS PharmSci","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1208/ps040424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pharmacokinetics, mass balance, and tissue distribution of a novel DNA alkylating agent, VNP40101M, in rat.
VNP40101M (1,2-Bis(methylsulfonyl)-1-(2-chloroethyl)-2-[(2 methylamino)carbonyl] hydrazine), a novel DNA alkylating agent, is currently under clinical development for the treatment of cancer in Phase I clinical trials. This study investigated the pharmacokinetics, mass balance, and tissue distribution of [14C]-VNP40101M in rats following a single intravenous dose of 10 mg/kg. After 7 days, the total recovery of radioactivity was 85% for males and 79% for females. Most of the radioactivity was eliminated within 48 hours through urine (70%), with less excreted in feces (6%). Tissue contained relatively high radioactive residues with the highest concentrations in kidneys, liver, lung, and spleen. After 7 days, tissue still contained 9% of the dose. At both 5 minutes and 1 hour post-dose, brain contained relatively high radioactivity (5.9 and 3.3 micro g equivalence/g and 50% and 30% of the blood concentration, respectively), suggesting that VNP40101M penetrated the blood-brain barrier. The elimination half-life of VNP40101M was approximately 20 minutes, the peak plasma concentration (Cmax) averaged 11.3 micro g/mL, the volume of distribution (Vss) averaged 0.91 L/kg, and the total body clearance (Cl) averaged 33.5 mL/min/kg. The metabolite profile in urine was complex, indicating VNP40101M was extensively metabolized. There were no apparent sex differences in pharmacokinetic parameters of VNP40101M in the rat.