含Span 83和Tween 80的油包水复合乳剂的流变性和稳定性

AAPS PharmSci Pub Date : 2003-01-01 DOI:10.1208/ps050107
Jim Jiao, Diane J Burgess
{"title":"含Span 83和Tween 80的油包水复合乳剂的流变性和稳定性","authors":"Jim Jiao,&nbsp;Diane J Burgess","doi":"10.1208/ps050107","DOIUrl":null,"url":null,"abstract":"<p><p>Multiple emulsions are often stabilized using a combination of hydrophilic and hydrophobic surfactants. The ratio of these surfactants is important in achieving stable multiple emulsions. The objective of this study was to evaluate the long-term stability of water-in-oil-in-water (W/O/W) multiple emulsions with respect to the concentrations of Span 83 and Tween 80. In addition, the effect of surfactant and electrolyte concentration on emulsion bulk rheological properties was investigated. Light microscopy, creaming volume, and rheological properties were used to assess emulsion stability. It was observed that the optimal surfactant concentrations for W/O/W emulsion long-term stability were 20% wt/vol Span 83 in the oil phase and 0.1% wt/vol Tween 80 in the continuous phase. Higher concentrations of Tween 80 had a destructive effect on W/O/W emulsion stability, which correlated with the observation that interfacial film strength at the oil/water interface decreased as the Tween 80 concentration increased. High Span 83 concentrations increased the storage modulus G' (solidlike) values and hence enhanced multiple emulsion stability. However, when 30% wt/vol Span 83 was incorporated, the viscosity of the primary W/O emulsion increased considerably and the emulsion droplets lost their shape. Salt added to the inner aqueous phase exerted an osmotic pressure that caused diffusion of water into the inner aqueous phase and increased W/O/W emulsion viscosity through an increase in the volume fraction of the primary W/O emulsion. This type of viscosity increase imposed a destabilizing effect because of the likelihood of rupture of the inner and multiple droplets.</p>","PeriodicalId":6918,"journal":{"name":"AAPS PharmSci","volume":"5 1","pages":"E7"},"PeriodicalIF":0.0000,"publicationDate":"2003-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1208/ps050107","citationCount":"181","resultStr":"{\"title\":\"Rheology and stability of water-in-oil-in-water multiple emulsions containing Span 83 and Tween 80.\",\"authors\":\"Jim Jiao,&nbsp;Diane J Burgess\",\"doi\":\"10.1208/ps050107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multiple emulsions are often stabilized using a combination of hydrophilic and hydrophobic surfactants. The ratio of these surfactants is important in achieving stable multiple emulsions. The objective of this study was to evaluate the long-term stability of water-in-oil-in-water (W/O/W) multiple emulsions with respect to the concentrations of Span 83 and Tween 80. In addition, the effect of surfactant and electrolyte concentration on emulsion bulk rheological properties was investigated. Light microscopy, creaming volume, and rheological properties were used to assess emulsion stability. It was observed that the optimal surfactant concentrations for W/O/W emulsion long-term stability were 20% wt/vol Span 83 in the oil phase and 0.1% wt/vol Tween 80 in the continuous phase. Higher concentrations of Tween 80 had a destructive effect on W/O/W emulsion stability, which correlated with the observation that interfacial film strength at the oil/water interface decreased as the Tween 80 concentration increased. High Span 83 concentrations increased the storage modulus G' (solidlike) values and hence enhanced multiple emulsion stability. However, when 30% wt/vol Span 83 was incorporated, the viscosity of the primary W/O emulsion increased considerably and the emulsion droplets lost their shape. Salt added to the inner aqueous phase exerted an osmotic pressure that caused diffusion of water into the inner aqueous phase and increased W/O/W emulsion viscosity through an increase in the volume fraction of the primary W/O emulsion. This type of viscosity increase imposed a destabilizing effect because of the likelihood of rupture of the inner and multiple droplets.</p>\",\"PeriodicalId\":6918,\"journal\":{\"name\":\"AAPS PharmSci\",\"volume\":\"5 1\",\"pages\":\"E7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1208/ps050107\",\"citationCount\":\"181\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AAPS PharmSci\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1208/ps050107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS PharmSci","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1208/ps050107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 181

摘要

多种乳液通常使用亲水性和疏水性表面活性剂的组合来稳定。这些表面活性剂的比例对于获得稳定的多重乳剂很重要。本研究的目的是评价水包油包水(W/O/W)复合乳剂在Span 83和Tween 80浓度下的长期稳定性。此外,还研究了表面活性剂和电解质浓度对乳液体流变性能的影响。光学显微镜、乳化体积和流变性能用来评估乳液的稳定性。结果表明,油相和连续相中,维持W/O/W乳液长期稳定性的最佳表面活性剂浓度分别为20% wt/vol Span 83和0.1% wt/vol Tween 80。较高浓度的Tween 80对水乳状液稳定性有破坏作用,这与观察到的油水界面界面膜强度随Tween 80浓度的增加而降低有关。高Span 83浓度增加了存储模量G′(固体样)值,从而增强了多乳液稳定性。然而,当加入30% wt/vol的Span 83时,初级W/O乳液的粘度显著增加,乳液滴失去了形状。内水相中加入盐会产生渗透压,导致水向内水相扩散,并通过增加初级W/O乳液的体积分数来增加W/O/W乳液的粘度。由于内部液滴和多个液滴破裂的可能性,这种类型的粘度增加施加了不稳定效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rheology and stability of water-in-oil-in-water multiple emulsions containing Span 83 and Tween 80.

Multiple emulsions are often stabilized using a combination of hydrophilic and hydrophobic surfactants. The ratio of these surfactants is important in achieving stable multiple emulsions. The objective of this study was to evaluate the long-term stability of water-in-oil-in-water (W/O/W) multiple emulsions with respect to the concentrations of Span 83 and Tween 80. In addition, the effect of surfactant and electrolyte concentration on emulsion bulk rheological properties was investigated. Light microscopy, creaming volume, and rheological properties were used to assess emulsion stability. It was observed that the optimal surfactant concentrations for W/O/W emulsion long-term stability were 20% wt/vol Span 83 in the oil phase and 0.1% wt/vol Tween 80 in the continuous phase. Higher concentrations of Tween 80 had a destructive effect on W/O/W emulsion stability, which correlated with the observation that interfacial film strength at the oil/water interface decreased as the Tween 80 concentration increased. High Span 83 concentrations increased the storage modulus G' (solidlike) values and hence enhanced multiple emulsion stability. However, when 30% wt/vol Span 83 was incorporated, the viscosity of the primary W/O emulsion increased considerably and the emulsion droplets lost their shape. Salt added to the inner aqueous phase exerted an osmotic pressure that caused diffusion of water into the inner aqueous phase and increased W/O/W emulsion viscosity through an increase in the volume fraction of the primary W/O emulsion. This type of viscosity increase imposed a destabilizing effect because of the likelihood of rupture of the inner and multiple droplets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The composite solubility versus pH profile and its role in intestinal absorption prediction cDNA Microarray analysis of vascular gene expression after nitric oxide donor infusion in rats: Implications for nitrate tolerance mechanisms Is antisense an appropriate nomenclature or design for oligodeoxynucleotides aimed at the inhibition of HIV-1 replication? Novel system to investigate the effects of inhaled volume and rates of rise in simulated inspiratory air flow on fine particle output from a dry powder inhaler Allometric scaling of xenobiotic clearance: Uncertainty versus universality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1