{"title":"夸克-胶子等离子体中的夸克子:重新检验开放量子系统方法","authors":"Y. Akamatsu","doi":"10.1016/j.ppnp.2021.103932","DOIUrl":null,"url":null,"abstract":"<div><p><span>Dissociation of quarkonium in quark–gluon plasma (QGP) is a long standing topic in relativistic heavy-ion collisions because it has been believed to signal one of the fundamental natures of the QGP — Debye screening due to the liberation of color degrees of freedom. Among recent new theoretical developments is the application of open quantum system framework to quarkonium in the QGP. Open system approach enables us to describe how dynamical as well as </span>static properties of QGP influences the time evolution of quarkonium in a coherent way.</p><p><span>Currently, there are several master equations for quarkonium corresponding to various scale assumptions, each derived in different theoretical frameworks. In this review, all of the existing master equations are systematically rederived as Lindblad equations in a unified framework. Also, as one of the most relevant descriptions in relativistic heavy-ion collisions, quantum Brownian motion of heavy quark pair in the QGP is studied in detail. The quantum Brownian motion is parametrized by a few fundamental quantities of QGP such as real and imaginary parts of heavy quark potential (complex potential), heavy quark momentum diffusion constant, and thermal dipole self-energy constant, which constitute in-medium self-energy of a static quarkonium. This indicates that the yields of quarkonia such as </span><span><math><mrow><mi>J</mi><mo>/</mo><mi>ψ</mi></mrow></math></span> and <span><math><mi>Υ</mi></math></span> in the relativistic heavy-ion collisions have the potential to determine these fundamental quantities.</p></div>","PeriodicalId":412,"journal":{"name":"Progress in Particle and Nuclear Physics","volume":"123 ","pages":"Article 103932"},"PeriodicalIF":14.5000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Quarkonium in quark–gluon plasma: Open quantum system approaches re-examined\",\"authors\":\"Y. Akamatsu\",\"doi\":\"10.1016/j.ppnp.2021.103932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Dissociation of quarkonium in quark–gluon plasma (QGP) is a long standing topic in relativistic heavy-ion collisions because it has been believed to signal one of the fundamental natures of the QGP — Debye screening due to the liberation of color degrees of freedom. Among recent new theoretical developments is the application of open quantum system framework to quarkonium in the QGP. Open system approach enables us to describe how dynamical as well as </span>static properties of QGP influences the time evolution of quarkonium in a coherent way.</p><p><span>Currently, there are several master equations for quarkonium corresponding to various scale assumptions, each derived in different theoretical frameworks. In this review, all of the existing master equations are systematically rederived as Lindblad equations in a unified framework. Also, as one of the most relevant descriptions in relativistic heavy-ion collisions, quantum Brownian motion of heavy quark pair in the QGP is studied in detail. The quantum Brownian motion is parametrized by a few fundamental quantities of QGP such as real and imaginary parts of heavy quark potential (complex potential), heavy quark momentum diffusion constant, and thermal dipole self-energy constant, which constitute in-medium self-energy of a static quarkonium. This indicates that the yields of quarkonia such as </span><span><math><mrow><mi>J</mi><mo>/</mo><mi>ψ</mi></mrow></math></span> and <span><math><mi>Υ</mi></math></span> in the relativistic heavy-ion collisions have the potential to determine these fundamental quantities.</p></div>\",\"PeriodicalId\":412,\"journal\":{\"name\":\"Progress in Particle and Nuclear Physics\",\"volume\":\"123 \",\"pages\":\"Article 103932\"},\"PeriodicalIF\":14.5000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Particle and Nuclear Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0146641021000934\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Particle and Nuclear Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0146641021000934","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
Quarkonium in quark–gluon plasma: Open quantum system approaches re-examined
Dissociation of quarkonium in quark–gluon plasma (QGP) is a long standing topic in relativistic heavy-ion collisions because it has been believed to signal one of the fundamental natures of the QGP — Debye screening due to the liberation of color degrees of freedom. Among recent new theoretical developments is the application of open quantum system framework to quarkonium in the QGP. Open system approach enables us to describe how dynamical as well as static properties of QGP influences the time evolution of quarkonium in a coherent way.
Currently, there are several master equations for quarkonium corresponding to various scale assumptions, each derived in different theoretical frameworks. In this review, all of the existing master equations are systematically rederived as Lindblad equations in a unified framework. Also, as one of the most relevant descriptions in relativistic heavy-ion collisions, quantum Brownian motion of heavy quark pair in the QGP is studied in detail. The quantum Brownian motion is parametrized by a few fundamental quantities of QGP such as real and imaginary parts of heavy quark potential (complex potential), heavy quark momentum diffusion constant, and thermal dipole self-energy constant, which constitute in-medium self-energy of a static quarkonium. This indicates that the yields of quarkonia such as and in the relativistic heavy-ion collisions have the potential to determine these fundamental quantities.
期刊介绍:
Taking the format of four issues per year, the journal Progress in Particle and Nuclear Physics aims to discuss new developments in the field at a level suitable for the general nuclear and particle physicist and, in greater technical depth, to explore the most important advances in these areas. Most of the articles will be in one of the fields of nuclear physics, hadron physics, heavy ion physics, particle physics, as well as astrophysics and cosmology. A particular effort is made to treat topics of an interface type for which both particle and nuclear physics are important. Related topics such as detector physics, accelerator physics or the application of nuclear physics in the medical and archaeological fields will also be treated from time to time.