{"title":"质子半径(谜题?)和它的亲戚","authors":"Clara Peset , Antonio Pineda , Oleksandr Tomalak","doi":"10.1016/j.ppnp.2021.103901","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>We review determinations of the electric proton charge radius from a diverse set of low-energy observables. We explore under which conditions it can be related to Wilson coefficients of appropriate effective field theories<span>. This discussion is generalized to other low-energy constants. This provides us with a unified framework to deal with a set of low-energy constants of the proton associated with its electromagnetic interactions<span>. Unambiguous definitions of these objects are given, as well as their relation with expectation values of QCD operators. We show that the proton radius obtained from spectroscopy and lepton–proton scattering (when both the </span></span></span>lepton and proton move with nonrelativistic velocities) is related to the same object of the underlying field theory with </span><span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>α</mi><mo>)</mo></mrow></mrow></math></span> precision. The model dependence of these analyses is discussed. The prospects of constructing effective field theories valid for the kinematic configuration of present, or near-future, lepton–proton scattering experiments are explored.</p></div>","PeriodicalId":412,"journal":{"name":"Progress in Particle and Nuclear Physics","volume":"121 ","pages":"Article 103901"},"PeriodicalIF":14.5000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ppnp.2021.103901","citationCount":"14","resultStr":"{\"title\":\"The proton radius (puzzle?) and its relatives\",\"authors\":\"Clara Peset , Antonio Pineda , Oleksandr Tomalak\",\"doi\":\"10.1016/j.ppnp.2021.103901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>We review determinations of the electric proton charge radius from a diverse set of low-energy observables. We explore under which conditions it can be related to Wilson coefficients of appropriate effective field theories<span>. This discussion is generalized to other low-energy constants. This provides us with a unified framework to deal with a set of low-energy constants of the proton associated with its electromagnetic interactions<span>. Unambiguous definitions of these objects are given, as well as their relation with expectation values of QCD operators. We show that the proton radius obtained from spectroscopy and lepton–proton scattering (when both the </span></span></span>lepton and proton move with nonrelativistic velocities) is related to the same object of the underlying field theory with </span><span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>α</mi><mo>)</mo></mrow></mrow></math></span> precision. The model dependence of these analyses is discussed. The prospects of constructing effective field theories valid for the kinematic configuration of present, or near-future, lepton–proton scattering experiments are explored.</p></div>\",\"PeriodicalId\":412,\"journal\":{\"name\":\"Progress in Particle and Nuclear Physics\",\"volume\":\"121 \",\"pages\":\"Article 103901\"},\"PeriodicalIF\":14.5000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.ppnp.2021.103901\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Particle and Nuclear Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0146641021000600\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Particle and Nuclear Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0146641021000600","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
We review determinations of the electric proton charge radius from a diverse set of low-energy observables. We explore under which conditions it can be related to Wilson coefficients of appropriate effective field theories. This discussion is generalized to other low-energy constants. This provides us with a unified framework to deal with a set of low-energy constants of the proton associated with its electromagnetic interactions. Unambiguous definitions of these objects are given, as well as their relation with expectation values of QCD operators. We show that the proton radius obtained from spectroscopy and lepton–proton scattering (when both the lepton and proton move with nonrelativistic velocities) is related to the same object of the underlying field theory with precision. The model dependence of these analyses is discussed. The prospects of constructing effective field theories valid for the kinematic configuration of present, or near-future, lepton–proton scattering experiments are explored.
期刊介绍:
Taking the format of four issues per year, the journal Progress in Particle and Nuclear Physics aims to discuss new developments in the field at a level suitable for the general nuclear and particle physicist and, in greater technical depth, to explore the most important advances in these areas. Most of the articles will be in one of the fields of nuclear physics, hadron physics, heavy ion physics, particle physics, as well as astrophysics and cosmology. A particular effort is made to treat topics of an interface type for which both particle and nuclear physics are important. Related topics such as detector physics, accelerator physics or the application of nuclear physics in the medical and archaeological fields will also be treated from time to time.