聚合物/无机杂化电解质的简单可扩展加工方法

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES Composites Science and Technology Pub Date : 2020-09-08 DOI:10.1016/j.compscitech.2020.108249
Shintaro Kitajima, Wonsung Choi, Dongmin Im
{"title":"聚合物/无机杂化电解质的简单可扩展加工方法","authors":"Shintaro Kitajima,&nbsp;Wonsung Choi,&nbsp;Dongmin Im","doi":"10.1016/j.compscitech.2020.108249","DOIUrl":null,"url":null,"abstract":"<div><p><span>The development of polymer/inorganic composite membrane<span> hybrid electrolytes for use in lithium-ion batteries has significantly advanced the innovation of energy storage devices. These membranes consist of monolayered Li-ion-conducting particles that are firmly embedded in an insulating polymer matrix<span> and can improve conductivity and </span></span></span>mechanical characteristics<span>. However, the scalability of producing one-particle-thick membranes remains a challenge. Here, we evaluate three different simple processes that may be used to produce composite membranes by examining scanning electron microscope<span> images and measuring conductivity. The conductivity of the membrane produced by the optimal method was 0.49 mS/cm at 20 °C, which is approximately 5.5 times higher than that of a commercially produced LATP-sintered disk. The optimal process described here could be used in industrial applications of both all-solid batteries in electric vehicles and flexible all-solid-state batteries in wearable devices.</span></span></p></div>","PeriodicalId":283,"journal":{"name":"Composites Science and Technology","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2020-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.compscitech.2020.108249","citationCount":"1","resultStr":"{\"title\":\"Simple scalable processing method for a polymer/inorganic hybridized electrolyte\",\"authors\":\"Shintaro Kitajima,&nbsp;Wonsung Choi,&nbsp;Dongmin Im\",\"doi\":\"10.1016/j.compscitech.2020.108249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>The development of polymer/inorganic composite membrane<span> hybrid electrolytes for use in lithium-ion batteries has significantly advanced the innovation of energy storage devices. These membranes consist of monolayered Li-ion-conducting particles that are firmly embedded in an insulating polymer matrix<span> and can improve conductivity and </span></span></span>mechanical characteristics<span>. However, the scalability of producing one-particle-thick membranes remains a challenge. Here, we evaluate three different simple processes that may be used to produce composite membranes by examining scanning electron microscope<span> images and measuring conductivity. The conductivity of the membrane produced by the optimal method was 0.49 mS/cm at 20 °C, which is approximately 5.5 times higher than that of a commercially produced LATP-sintered disk. The optimal process described here could be used in industrial applications of both all-solid batteries in electric vehicles and flexible all-solid-state batteries in wearable devices.</span></span></p></div>\",\"PeriodicalId\":283,\"journal\":{\"name\":\"Composites Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2020-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.compscitech.2020.108249\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266353820306217\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266353820306217","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 1

摘要

用于锂离子电池的聚合物/无机复合膜混合电解质的开发,极大地推动了储能装置的创新。这些膜由单层锂离子导电颗粒组成,这些颗粒牢固地嵌入绝缘聚合物基质中,可以提高导电性和机械特性。然而,生产单颗粒厚膜的可扩展性仍然是一个挑战。在这里,我们通过检查扫描电子显微镜图像和测量电导率来评估可能用于生产复合膜的三种不同的简单过程。在20°C时,该方法制备的膜的电导率为0.49 mS/cm,约为商业生产的latp烧结盘的5.5倍。这里描述的最佳工艺可以用于电动汽车的全固态电池和可穿戴设备的柔性全固态电池的工业应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Simple scalable processing method for a polymer/inorganic hybridized electrolyte

The development of polymer/inorganic composite membrane hybrid electrolytes for use in lithium-ion batteries has significantly advanced the innovation of energy storage devices. These membranes consist of monolayered Li-ion-conducting particles that are firmly embedded in an insulating polymer matrix and can improve conductivity and mechanical characteristics. However, the scalability of producing one-particle-thick membranes remains a challenge. Here, we evaluate three different simple processes that may be used to produce composite membranes by examining scanning electron microscope images and measuring conductivity. The conductivity of the membrane produced by the optimal method was 0.49 mS/cm at 20 °C, which is approximately 5.5 times higher than that of a commercially produced LATP-sintered disk. The optimal process described here could be used in industrial applications of both all-solid batteries in electric vehicles and flexible all-solid-state batteries in wearable devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Composites Science and Technology
Composites Science and Technology 工程技术-材料科学:复合
CiteScore
16.20
自引率
9.90%
发文量
611
审稿时长
33 days
期刊介绍: Composites Science and Technology publishes refereed original articles on the fundamental and applied science of engineering composites. The focus of this journal is on polymeric matrix composites with reinforcements/fillers ranging from nano- to macro-scale. CSTE encourages manuscripts reporting unique, innovative contributions to the physics, chemistry, materials science and applied mechanics aspects of advanced composites. Besides traditional fiber reinforced composites, novel composites with significant potential for engineering applications are encouraged.
期刊最新文献
Self-assembled nest-like BN skeletons enable polymer composites with high thermal management capacity Lightweight composites derived from carbonized taro stems for microwave energy attenuation and thermal energy storage Effect of atomic oxygen and vacuum thermal aging on graphene and glass fibre reinforced cyanate ester-based shape memory polymer composite for deployable thin wall structures Cold crystallization behavior of poly(lactic acid) induced by poly(ethylene glycol)-grafted graphene oxide: Crystallization kinetics and polymorphism Shape memory cyclic behavior and mechanical durability of woven fabric reinforced shape memory polymer composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1