表面磁性原子的自旋退相干

IF 8.7 2区 工程技术 Q1 CHEMISTRY, PHYSICAL Progress in Surface Science Pub Date : 2017-02-01 DOI:10.1016/j.progsurf.2016.12.001
F. Delgado , J. Fernández-Rossier
{"title":"表面磁性原子的自旋退相干","authors":"F. Delgado ,&nbsp;J. Fernández-Rossier","doi":"10.1016/j.progsurf.2016.12.001","DOIUrl":null,"url":null,"abstract":"<div><p><span>We review the problem of spin decoherence of magnetic atoms deposited on a surface. Recent breakthroughs in scanning tunnelling microscopy (STM) make it possible to probe the spin dynamics of individual atoms, either isolated or integrated in nanoengineered spin structures. Transport pump and probe techniques with spin polarized tips permit measuring the spin relaxation time </span><span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span><span>, while novel demonstration of electrically driven STM single spin resonance has provided a direct measurement of the spin coherence time </span><span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span><span> of an individual magnetic adatom<span>. Here we address the problem of spin decoherence from the theoretical point of view. First we provide a short general overview of decoherence in open quantum systems and we discuss with some detail ambiguities that arise in the case of degenerate spectra, relevant for magnetic atoms. Second, we address the physical mechanisms that allows probing the spin coherence of magnetic atoms on surfaces. Third, we discuss the main spin decoherence mechanisms at work on a surface, most notably, Kondo interaction, but also spin–phonon coupling and dephasing by Johnson noise. Finally, we briefly discuss the implications in the broader context of quantum technologies.</span></span></p></div>","PeriodicalId":416,"journal":{"name":"Progress in Surface Science","volume":"92 1","pages":"Pages 40-82"},"PeriodicalIF":8.7000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.progsurf.2016.12.001","citationCount":"51","resultStr":"{\"title\":\"Spin decoherence of magnetic atoms on surfaces\",\"authors\":\"F. Delgado ,&nbsp;J. Fernández-Rossier\",\"doi\":\"10.1016/j.progsurf.2016.12.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>We review the problem of spin decoherence of magnetic atoms deposited on a surface. Recent breakthroughs in scanning tunnelling microscopy (STM) make it possible to probe the spin dynamics of individual atoms, either isolated or integrated in nanoengineered spin structures. Transport pump and probe techniques with spin polarized tips permit measuring the spin relaxation time </span><span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span><span>, while novel demonstration of electrically driven STM single spin resonance has provided a direct measurement of the spin coherence time </span><span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span><span> of an individual magnetic adatom<span>. Here we address the problem of spin decoherence from the theoretical point of view. First we provide a short general overview of decoherence in open quantum systems and we discuss with some detail ambiguities that arise in the case of degenerate spectra, relevant for magnetic atoms. Second, we address the physical mechanisms that allows probing the spin coherence of magnetic atoms on surfaces. Third, we discuss the main spin decoherence mechanisms at work on a surface, most notably, Kondo interaction, but also spin–phonon coupling and dephasing by Johnson noise. Finally, we briefly discuss the implications in the broader context of quantum technologies.</span></span></p></div>\",\"PeriodicalId\":416,\"journal\":{\"name\":\"Progress in Surface Science\",\"volume\":\"92 1\",\"pages\":\"Pages 40-82\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2017-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.progsurf.2016.12.001\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Surface Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079681616300351\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Surface Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079681616300351","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 51

摘要

本文综述了表面沉积磁性原子的自旋退相干问题。扫描隧道显微镜(STM)的最新突破使得探测单个原子的自旋动力学成为可能,无论是孤立的还是集成在纳米工程自旋结构中。带有自旋极化尖端的输运泵和探针技术允许测量自旋弛豫时间T1,而电驱动STM单自旋共振的新演示提供了对单个磁原子的自旋相干时间T2的直接测量。本文从理论的角度讨论了自旋退相干问题。首先,我们简要概述了开放量子系统中的退相干,并详细讨论了与磁性原子相关的简并谱中出现的一些模糊性。其次,我们讨论了允许探测表面上磁性原子自旋相干性的物理机制。第三,我们讨论了在表面上起作用的主要自旋退相干机制,最值得注意的是近藤相互作用,以及自旋声子耦合和约翰逊噪声的退相。最后,我们简要讨论了量子技术在更广泛背景下的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spin decoherence of magnetic atoms on surfaces

We review the problem of spin decoherence of magnetic atoms deposited on a surface. Recent breakthroughs in scanning tunnelling microscopy (STM) make it possible to probe the spin dynamics of individual atoms, either isolated or integrated in nanoengineered spin structures. Transport pump and probe techniques with spin polarized tips permit measuring the spin relaxation time T1, while novel demonstration of electrically driven STM single spin resonance has provided a direct measurement of the spin coherence time T2 of an individual magnetic adatom. Here we address the problem of spin decoherence from the theoretical point of view. First we provide a short general overview of decoherence in open quantum systems and we discuss with some detail ambiguities that arise in the case of degenerate spectra, relevant for magnetic atoms. Second, we address the physical mechanisms that allows probing the spin coherence of magnetic atoms on surfaces. Third, we discuss the main spin decoherence mechanisms at work on a surface, most notably, Kondo interaction, but also spin–phonon coupling and dephasing by Johnson noise. Finally, we briefly discuss the implications in the broader context of quantum technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Surface Science
Progress in Surface Science 工程技术-物理:凝聚态物理
CiteScore
11.30
自引率
0.00%
发文量
10
审稿时长
3 months
期刊介绍: Progress in Surface Science publishes progress reports and review articles by invited authors of international stature. The papers are aimed at surface scientists and cover various aspects of surface science. Papers in the new section Progress Highlights, are more concise and general at the same time, and are aimed at all scientists. Because of the transdisciplinary nature of surface science, topics are chosen for their timeliness from across the wide spectrum of scientific and engineering subjects. The journal strives to promote the exchange of ideas between surface scientists in the various areas. Authors are encouraged to write articles that are of relevance and interest to both established surface scientists and newcomers in the field.
期刊最新文献
Editorial Board Current perspective towards a general framework to describe and harness friction at the nanoscale Time-resolved photoemission electron microscopy of semiconductor interfaces Editorial Board Structural dynamics in atomic indium wires on silicon: From ultrafast probing to coherent vibrational control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1