Sudarshan Narayanan, Joshua S. Gibson, Jack Aspinall, Robert S. Weatherup, Mauro Pasta
{"title":"锂金属-固体电解质界面的原位和操作表征","authors":"Sudarshan Narayanan, Joshua S. Gibson, Jack Aspinall, Robert S. Weatherup, Mauro Pasta","doi":"10.1016/j.cossms.2021.100978","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>The use of lithium metal as the negative electrode holds great promise for high energy density solid-state batteries (SSBs) of the future, but at the same time presents major technical challenges in their development. Li metal, with its high reactivity, soft and ductile nature, and propensity towards </span>mechanical deformation<span> during electrochemical cycling, is susceptible to the formation of various defects such as voids, cracks and filamentary deposits at the Li metal - solid electrolyte<span> interface, that eventually cause rapid degradation of electrochemical cell performance. In order to gain insights into these interfacial processes and identify mechanisms for failure, </span></span></span><em>in situ</em> and <em>operando</em> characterisation approaches are essential. In this perspective, we present our opinions on the current state of such techniques, while highlighting the existing limitations and scope of these methods. We also endeavour to present opportunities for future research into developing and building on existing approaches to better evaluate the Li metal-solid electrolyte interface so as to guide the appropriate choice of materials to further enable efficient SSB architectures.</p></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"26 2","pages":"Article 100978"},"PeriodicalIF":12.2000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In situ and operando characterisation of Li metal – Solid electrolyte interfaces\",\"authors\":\"Sudarshan Narayanan, Joshua S. Gibson, Jack Aspinall, Robert S. Weatherup, Mauro Pasta\",\"doi\":\"10.1016/j.cossms.2021.100978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>The use of lithium metal as the negative electrode holds great promise for high energy density solid-state batteries (SSBs) of the future, but at the same time presents major technical challenges in their development. Li metal, with its high reactivity, soft and ductile nature, and propensity towards </span>mechanical deformation<span> during electrochemical cycling, is susceptible to the formation of various defects such as voids, cracks and filamentary deposits at the Li metal - solid electrolyte<span> interface, that eventually cause rapid degradation of electrochemical cell performance. In order to gain insights into these interfacial processes and identify mechanisms for failure, </span></span></span><em>in situ</em> and <em>operando</em> characterisation approaches are essential. In this perspective, we present our opinions on the current state of such techniques, while highlighting the existing limitations and scope of these methods. We also endeavour to present opportunities for future research into developing and building on existing approaches to better evaluate the Li metal-solid electrolyte interface so as to guide the appropriate choice of materials to further enable efficient SSB architectures.</p></div>\",\"PeriodicalId\":295,\"journal\":{\"name\":\"Current Opinion in Solid State & Materials Science\",\"volume\":\"26 2\",\"pages\":\"Article 100978\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Solid State & Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359028621000814\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Solid State & Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359028621000814","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
In situ and operando characterisation of Li metal – Solid electrolyte interfaces
The use of lithium metal as the negative electrode holds great promise for high energy density solid-state batteries (SSBs) of the future, but at the same time presents major technical challenges in their development. Li metal, with its high reactivity, soft and ductile nature, and propensity towards mechanical deformation during electrochemical cycling, is susceptible to the formation of various defects such as voids, cracks and filamentary deposits at the Li metal - solid electrolyte interface, that eventually cause rapid degradation of electrochemical cell performance. In order to gain insights into these interfacial processes and identify mechanisms for failure, in situ and operando characterisation approaches are essential. In this perspective, we present our opinions on the current state of such techniques, while highlighting the existing limitations and scope of these methods. We also endeavour to present opportunities for future research into developing and building on existing approaches to better evaluate the Li metal-solid electrolyte interface so as to guide the appropriate choice of materials to further enable efficient SSB architectures.
期刊介绍:
Title: Current Opinion in Solid State & Materials Science
Journal Overview:
Aims to provide a snapshot of the latest research and advances in materials science
Publishes six issues per year, each containing reviews covering exciting and developing areas of materials science
Each issue comprises 2-3 sections of reviews commissioned by international researchers who are experts in their fields
Provides materials scientists with the opportunity to stay informed about current developments in their own and related areas of research
Promotes cross-fertilization of ideas across an increasingly interdisciplinary field