非均相电fenton工艺的负载催化剂:最新趋势和未来方向

IF 12.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Current Opinion in Solid State & Materials Science Pub Date : 2022-04-01 DOI:10.1016/j.cossms.2022.100981
Ashitha Gopinath , Lakshmi Pisharody , Amishi Popat , P.V. Nidheesh
{"title":"非均相电fenton工艺的负载催化剂:最新趋势和未来方向","authors":"Ashitha Gopinath ,&nbsp;Lakshmi Pisharody ,&nbsp;Amishi Popat ,&nbsp;P.V. Nidheesh","doi":"10.1016/j.cossms.2022.100981","DOIUrl":null,"url":null,"abstract":"<div><p>Extremely low pH requirement and additional sludge management for the homogeneous electro-Fenton (EF) process necessitated the development of heterogeneous electro-Fenton (HEF) reactions that utilize solid catalysts that can be recovered and reused. In the recent decades, supported catalysts have immensely attracted researchers owing to the outstanding physical, chemical, and electronic properties of the supports that benefit the EF process by enhancing the removal efficiency, reducing reaction time, and extending the operational pH range. This review enlightens the readers about various materials that have been used for supporting the catalysts, their importance, method of impregnation, and optimum conditions required to attain maximum pollutant removal. From the wide array of catalysts reviewed, porous supports with a high surface area such as activated carbon, biochar and fibres adsorbs the pollutants near their surface facilitating enhanced Fenton reactions and degradation of pollutants. Alginate-based catalysts can be prepared by a simple procedure and exhibit good degradation efficiency when used in batch and continuous EF reactors. Zeolite-based catalysts are structurally stable and display promising results for successive cycles. The flexible and conductive nature of fibre-based supports performs the dual role as a catalyst and cathode. The highly stable and conductive properties of graphene and carbon nanotubes promote electron transfer, much required for continuous EF reactions.</p></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"26 2","pages":"Article 100981"},"PeriodicalIF":12.2000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":"{\"title\":\"Supported catalysts for heterogeneous electro-Fenton processes: Recent trends and future directions\",\"authors\":\"Ashitha Gopinath ,&nbsp;Lakshmi Pisharody ,&nbsp;Amishi Popat ,&nbsp;P.V. Nidheesh\",\"doi\":\"10.1016/j.cossms.2022.100981\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Extremely low pH requirement and additional sludge management for the homogeneous electro-Fenton (EF) process necessitated the development of heterogeneous electro-Fenton (HEF) reactions that utilize solid catalysts that can be recovered and reused. In the recent decades, supported catalysts have immensely attracted researchers owing to the outstanding physical, chemical, and electronic properties of the supports that benefit the EF process by enhancing the removal efficiency, reducing reaction time, and extending the operational pH range. This review enlightens the readers about various materials that have been used for supporting the catalysts, their importance, method of impregnation, and optimum conditions required to attain maximum pollutant removal. From the wide array of catalysts reviewed, porous supports with a high surface area such as activated carbon, biochar and fibres adsorbs the pollutants near their surface facilitating enhanced Fenton reactions and degradation of pollutants. Alginate-based catalysts can be prepared by a simple procedure and exhibit good degradation efficiency when used in batch and continuous EF reactors. Zeolite-based catalysts are structurally stable and display promising results for successive cycles. The flexible and conductive nature of fibre-based supports performs the dual role as a catalyst and cathode. The highly stable and conductive properties of graphene and carbon nanotubes promote electron transfer, much required for continuous EF reactions.</p></div>\",\"PeriodicalId\":295,\"journal\":{\"name\":\"Current Opinion in Solid State & Materials Science\",\"volume\":\"26 2\",\"pages\":\"Article 100981\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Solid State & Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359028622000018\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Solid State & Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359028622000018","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 46

摘要

均相电- fenton (EF)工艺的极低pH值要求和额外的污泥管理,使得非均相电- fenton (HEF)反应的发展成为必要,这种反应利用可回收再利用的固体催化剂。近几十年来,负载型催化剂因其卓越的物理、化学和电子特性而受到了研究者的极大关注,这些特性通过提高去除效率、缩短反应时间和扩大操作pH范围而有利于EF过程。本文综述了用于催化剂载体的各种材料,它们的重要性,浸渍方法,以及达到最大污染物去除所需的最佳条件。从各种各样的催化剂来看,具有高表面积的多孔载体,如活性炭、生物炭和纤维,可以在其表面附近吸附污染物,促进芬顿反应和污染物的降解。海藻酸盐基催化剂制备方法简单,在间歇反应器和连续反应器中均表现出良好的降解效率。沸石基催化剂结构稳定,在连续循环中表现出良好的效果。纤维基支架的柔韧性和导电性发挥了催化剂和阴极的双重作用。石墨烯和碳纳米管的高稳定性和导电性促进了电子转移,这是连续EF反应所必需的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Supported catalysts for heterogeneous electro-Fenton processes: Recent trends and future directions

Extremely low pH requirement and additional sludge management for the homogeneous electro-Fenton (EF) process necessitated the development of heterogeneous electro-Fenton (HEF) reactions that utilize solid catalysts that can be recovered and reused. In the recent decades, supported catalysts have immensely attracted researchers owing to the outstanding physical, chemical, and electronic properties of the supports that benefit the EF process by enhancing the removal efficiency, reducing reaction time, and extending the operational pH range. This review enlightens the readers about various materials that have been used for supporting the catalysts, their importance, method of impregnation, and optimum conditions required to attain maximum pollutant removal. From the wide array of catalysts reviewed, porous supports with a high surface area such as activated carbon, biochar and fibres adsorbs the pollutants near their surface facilitating enhanced Fenton reactions and degradation of pollutants. Alginate-based catalysts can be prepared by a simple procedure and exhibit good degradation efficiency when used in batch and continuous EF reactors. Zeolite-based catalysts are structurally stable and display promising results for successive cycles. The flexible and conductive nature of fibre-based supports performs the dual role as a catalyst and cathode. The highly stable and conductive properties of graphene and carbon nanotubes promote electron transfer, much required for continuous EF reactions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Opinion in Solid State & Materials Science
Current Opinion in Solid State & Materials Science 工程技术-材料科学:综合
CiteScore
21.10
自引率
3.60%
发文量
41
审稿时长
47 days
期刊介绍: Title: Current Opinion in Solid State & Materials Science Journal Overview: Aims to provide a snapshot of the latest research and advances in materials science Publishes six issues per year, each containing reviews covering exciting and developing areas of materials science Each issue comprises 2-3 sections of reviews commissioned by international researchers who are experts in their fields Provides materials scientists with the opportunity to stay informed about current developments in their own and related areas of research Promotes cross-fertilization of ideas across an increasingly interdisciplinary field
期刊最新文献
The path towards plasma facing components: A review of state-of-the-art in W-based refractory high-entropy alloys Artificial Intelligence and Machine Learning for materials Grain refinement and morphological control of intermetallic compounds: A comprehensive review Autonomous research and development of structural materials – An introduction and vision Monolithic 3D integration as a pathway to energy-efficient computing and beyond: From materials and devices to architectures and chips
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1