{"title":"非晶化是高应力下的一种变形机制","authors":"Hosni Idrissi , Philippe Carrez , Patrick Cordier","doi":"10.1016/j.cossms.2021.100976","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we review the work related to amorphization under mechanical stress. Beyond pressure, we highlight the role of deviatoric or shear stresses. We show that the most recent works make amorphization appear as a deformation mechanism in its own right, in particular under extreme conditions (shocks, deformations under high stresses, high strain-rates).</p></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"26 1","pages":"Article 100976"},"PeriodicalIF":12.2000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"On amorphization as a deformation mechanism under high stresses\",\"authors\":\"Hosni Idrissi , Philippe Carrez , Patrick Cordier\",\"doi\":\"10.1016/j.cossms.2021.100976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we review the work related to amorphization under mechanical stress. Beyond pressure, we highlight the role of deviatoric or shear stresses. We show that the most recent works make amorphization appear as a deformation mechanism in its own right, in particular under extreme conditions (shocks, deformations under high stresses, high strain-rates).</p></div>\",\"PeriodicalId\":295,\"journal\":{\"name\":\"Current Opinion in Solid State & Materials Science\",\"volume\":\"26 1\",\"pages\":\"Article 100976\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Solid State & Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359028621000796\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Solid State & Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359028621000796","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
On amorphization as a deformation mechanism under high stresses
In this paper we review the work related to amorphization under mechanical stress. Beyond pressure, we highlight the role of deviatoric or shear stresses. We show that the most recent works make amorphization appear as a deformation mechanism in its own right, in particular under extreme conditions (shocks, deformations under high stresses, high strain-rates).
期刊介绍:
Title: Current Opinion in Solid State & Materials Science
Journal Overview:
Aims to provide a snapshot of the latest research and advances in materials science
Publishes six issues per year, each containing reviews covering exciting and developing areas of materials science
Each issue comprises 2-3 sections of reviews commissioned by international researchers who are experts in their fields
Provides materials scientists with the opportunity to stay informed about current developments in their own and related areas of research
Promotes cross-fertilization of ideas across an increasingly interdisciplinary field