二氢叶酸还原酶的结构、动力学和催化功能。

Jason R Schnell, H Jane Dyson, Peter E Wright
{"title":"二氢叶酸还原酶的结构、动力学和催化功能。","authors":"Jason R Schnell,&nbsp;H Jane Dyson,&nbsp;Peter E Wright","doi":"10.1146/annurev.biophys.33.110502.133613","DOIUrl":null,"url":null,"abstract":"<p><p>Molecular motions are widely regarded as contributing factors in many aspects of protein function. The enzyme dihydrofolate reductase (DHFR), and particularly that from Escherichia coli, has become an important system for investigating the linkage between protein dynamics and catalytic function, both because of the location and timescales of the motions observed and because of the availability of a large amount of structural and mechanistic data that provides a detailed context within which the motions can be interpreted. Changes in protein dynamics in response to ligand binding, conformational change, and mutagenesis have been probed using numerous experimental and theoretical approaches, including X-ray crystallography, fluorescence, nuclear magnetic resonance (NMR), molecular dynamics simulations, and hybrid quantum/classical dynamics methods. These studies provide a detailed map of changes in conformation and dynamics throughout the catalytic cycle of DHFR and give new insights into the role of protein motions in the catalytic activity of this enzyme.</p>","PeriodicalId":8270,"journal":{"name":"Annual review of biophysics and biomolecular structure","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2004-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev.biophys.33.110502.133613","citationCount":"453","resultStr":"{\"title\":\"Structure, dynamics, and catalytic function of dihydrofolate reductase.\",\"authors\":\"Jason R Schnell,&nbsp;H Jane Dyson,&nbsp;Peter E Wright\",\"doi\":\"10.1146/annurev.biophys.33.110502.133613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Molecular motions are widely regarded as contributing factors in many aspects of protein function. The enzyme dihydrofolate reductase (DHFR), and particularly that from Escherichia coli, has become an important system for investigating the linkage between protein dynamics and catalytic function, both because of the location and timescales of the motions observed and because of the availability of a large amount of structural and mechanistic data that provides a detailed context within which the motions can be interpreted. Changes in protein dynamics in response to ligand binding, conformational change, and mutagenesis have been probed using numerous experimental and theoretical approaches, including X-ray crystallography, fluorescence, nuclear magnetic resonance (NMR), molecular dynamics simulations, and hybrid quantum/classical dynamics methods. These studies provide a detailed map of changes in conformation and dynamics throughout the catalytic cycle of DHFR and give new insights into the role of protein motions in the catalytic activity of this enzyme.</p>\",\"PeriodicalId\":8270,\"journal\":{\"name\":\"Annual review of biophysics and biomolecular structure\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1146/annurev.biophys.33.110502.133613\",\"citationCount\":\"453\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of biophysics and biomolecular structure\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev.biophys.33.110502.133613\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of biophysics and biomolecular structure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/annurev.biophys.33.110502.133613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 453

摘要

分子运动被广泛认为是影响蛋白质功能许多方面的因素。二氢叶酸还原酶(DHFR),特别是来自大肠杆菌的DHFR,已经成为研究蛋白质动力学和催化功能之间联系的重要系统,这既是因为观察到的运动的位置和时间尺度,也是因为大量的结构和机制数据的可用性,提供了可以解释运动的详细背景。配体结合、构象变化和诱变对蛋白质动力学的影响已经通过多种实验和理论方法进行了探讨,包括x射线晶体学、荧光、核磁共振(NMR)、分子动力学模拟和量子/经典混合动力学方法。这些研究提供了DHFR在整个催化循环中构象和动力学变化的详细地图,并为蛋白质运动在该酶的催化活性中的作用提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structure, dynamics, and catalytic function of dihydrofolate reductase.

Molecular motions are widely regarded as contributing factors in many aspects of protein function. The enzyme dihydrofolate reductase (DHFR), and particularly that from Escherichia coli, has become an important system for investigating the linkage between protein dynamics and catalytic function, both because of the location and timescales of the motions observed and because of the availability of a large amount of structural and mechanistic data that provides a detailed context within which the motions can be interpreted. Changes in protein dynamics in response to ligand binding, conformational change, and mutagenesis have been probed using numerous experimental and theoretical approaches, including X-ray crystallography, fluorescence, nuclear magnetic resonance (NMR), molecular dynamics simulations, and hybrid quantum/classical dynamics methods. These studies provide a detailed map of changes in conformation and dynamics throughout the catalytic cycle of DHFR and give new insights into the role of protein motions in the catalytic activity of this enzyme.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visualizing flexibility at molecular resolution: analysis of heterogeneity in single-particle electron microscopy reconstructions. Phase boundaries and biological membranes. Calculation of protein-ligand binding affinities. Synthetic gene circuits: design with directed evolution. Bilayer thickness and membrane protein function: an energetic perspective.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1