通过气相质子转移反应优先破坏含nh2复合星际分子

IF 3.3 3区 化学 Q2 CHEMISTRY, PHYSICAL Faraday Discussions Pub Date : 2023-02-27 DOI:10.1039/D3FD00014A
Robin T. Garrod and Eric Herbst
{"title":"通过气相质子转移反应优先破坏含nh2复合星际分子","authors":"Robin T. Garrod and Eric Herbst","doi":"10.1039/D3FD00014A","DOIUrl":null,"url":null,"abstract":"<p >Complex, nitrogen-bearing interstellar molecules, especially amines, are targets of particular interest for detection in star- and planet-forming regions, due to their possible relevance to prebiotic chemistry. However, these NH<small><sub>2</sub></small>-bearing molecules are not universally detected in sources where other, oxygen-bearing complex organic molecules (COMs) are often plentiful. Nevertheless, recent astrochemical models have often predicted large abundances for NH<small><sub>2</sub></small>-bearing complex organics, based on their putative production on dust grains. Here we investigate a range of new gas-phase proton-transfer reactions and their influence on the destruction of COMs. As in past studies, reactions between protonated COMs and ammonia (NH<small><sub>3</sub></small>) are found to be important in prolonging gas-phase COM lifetimes. However, for molecules with proton affinities (PA) greater than that of ammonia, proton-transfer reactions result in drastic reductions in abundances and lifetimes. Ammonia acts as a sink for proton transfer from low-PA COMs, while passing on protons to high-PA species; dissociative recombination with electrons then destroys the resulting ions. Species strongly affected include methylamine (CH<small><sub>3</sub></small>NH<small><sub>2</sub></small>), urea (NH<small><sub>2</sub></small>C(O)NH<small><sub>2</sub></small>) and others bearing the NH<small><sub>2</sub></small> group. The abundances of these species show a sharp time dependence, indicating that their detectability may rest on the precise chemical age of the source. Rapid gas-phase destruction of glycine (NH<small><sub>2</sub></small>CH<small><sub>2</sub></small>COOH) in the models suggests that its future detection may be yet more challenging than previously hoped.</p>","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":"245 ","pages":" 541-568"},"PeriodicalIF":3.3000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preferential destruction of NH2-bearing complex interstellar molecules via gas-phase proton-transfer reactions\",\"authors\":\"Robin T. Garrod and Eric Herbst\",\"doi\":\"10.1039/D3FD00014A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Complex, nitrogen-bearing interstellar molecules, especially amines, are targets of particular interest for detection in star- and planet-forming regions, due to their possible relevance to prebiotic chemistry. However, these NH<small><sub>2</sub></small>-bearing molecules are not universally detected in sources where other, oxygen-bearing complex organic molecules (COMs) are often plentiful. Nevertheless, recent astrochemical models have often predicted large abundances for NH<small><sub>2</sub></small>-bearing complex organics, based on their putative production on dust grains. Here we investigate a range of new gas-phase proton-transfer reactions and their influence on the destruction of COMs. As in past studies, reactions between protonated COMs and ammonia (NH<small><sub>3</sub></small>) are found to be important in prolonging gas-phase COM lifetimes. However, for molecules with proton affinities (PA) greater than that of ammonia, proton-transfer reactions result in drastic reductions in abundances and lifetimes. Ammonia acts as a sink for proton transfer from low-PA COMs, while passing on protons to high-PA species; dissociative recombination with electrons then destroys the resulting ions. Species strongly affected include methylamine (CH<small><sub>3</sub></small>NH<small><sub>2</sub></small>), urea (NH<small><sub>2</sub></small>C(O)NH<small><sub>2</sub></small>) and others bearing the NH<small><sub>2</sub></small> group. The abundances of these species show a sharp time dependence, indicating that their detectability may rest on the precise chemical age of the source. Rapid gas-phase destruction of glycine (NH<small><sub>2</sub></small>CH<small><sub>2</sub></small>COOH) in the models suggests that its future detection may be yet more challenging than previously hoped.</p>\",\"PeriodicalId\":76,\"journal\":{\"name\":\"Faraday Discussions\",\"volume\":\"245 \",\"pages\":\" 541-568\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Faraday Discussions\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2023/fd/d3fd00014a\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Faraday Discussions","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/fd/d3fd00014a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

复杂的、含氮的星际分子,特别是胺,是在恒星和行星形成区域特别感兴趣的探测目标,因为它们可能与生命前化学有关。然而,这些含氨分子在其他含氧复杂有机分子(COMs)通常丰富的来源中并不普遍检测到。尽管如此,最近的天体化学模型经常预测含有nh2的复杂有机物的丰度,基于它们在尘埃颗粒上的假定生产。本文研究了一系列新的气相质子转移反应及其对COMs破坏的影响。在过去的研究中,质子化COM和氨(NH3)之间的反应被发现是延长气相COM寿命的重要因素。然而,对于质子亲和(PA)大于氨的分子,质子转移反应会导致丰度和寿命的急剧减少。氨作为质子从低pa com转移的汇,同时将质子传递给高pa物种;然后与电子解离重组破坏产生的离子。受到强烈影响的物质包括甲胺(CH3NH2)、尿素(NH2C(O)NH2)和其他带有NH2基团的物质。这些物种的丰度表现出明显的时间依赖性,表明它们的可探测性可能取决于源的精确化学年龄。模型中甘氨酸(NH2CH2COOH)的快速气相破坏表明,它的未来检测可能比以前希望的更具挑战性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preferential destruction of NH2-bearing complex interstellar molecules via gas-phase proton-transfer reactions

Complex, nitrogen-bearing interstellar molecules, especially amines, are targets of particular interest for detection in star- and planet-forming regions, due to their possible relevance to prebiotic chemistry. However, these NH2-bearing molecules are not universally detected in sources where other, oxygen-bearing complex organic molecules (COMs) are often plentiful. Nevertheless, recent astrochemical models have often predicted large abundances for NH2-bearing complex organics, based on their putative production on dust grains. Here we investigate a range of new gas-phase proton-transfer reactions and their influence on the destruction of COMs. As in past studies, reactions between protonated COMs and ammonia (NH3) are found to be important in prolonging gas-phase COM lifetimes. However, for molecules with proton affinities (PA) greater than that of ammonia, proton-transfer reactions result in drastic reductions in abundances and lifetimes. Ammonia acts as a sink for proton transfer from low-PA COMs, while passing on protons to high-PA species; dissociative recombination with electrons then destroys the resulting ions. Species strongly affected include methylamine (CH3NH2), urea (NH2C(O)NH2) and others bearing the NH2 group. The abundances of these species show a sharp time dependence, indicating that their detectability may rest on the precise chemical age of the source. Rapid gas-phase destruction of glycine (NH2CH2COOH) in the models suggests that its future detection may be yet more challenging than previously hoped.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Faraday Discussions
Faraday Discussions 化学-物理化学
自引率
0.00%
发文量
259
期刊介绍: Discussion summary and research papers from discussion meetings that focus on rapidly developing areas of physical chemistry and its interfaces
期刊最新文献
Paediatric hydrocephalus Paediatric hydrocephalus Severe cutaneous adverse reactions Back cover Poster list
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1