Christopher D Snow, Eric J Sorin, Young Min Rhee, Vijay S Pande
{"title":"模拟能在多大程度上预测蛋白质折叠动力学和热力学?","authors":"Christopher D Snow, Eric J Sorin, Young Min Rhee, Vijay S Pande","doi":"10.1146/annurev.biophys.34.040204.144447","DOIUrl":null,"url":null,"abstract":"<p><p>Simulation of protein folding has come a long way in five years. Notably, new quantitative comparisons with experiments for small, rapidly folding proteins have become possible. As the only way to validate simulation methodology, this achievement marks a significant advance. Here, we detail these recent achievements and ask whether simulations have indeed rendered quantitative predictions in several areas, including protein folding kinetics, thermodynamics, and physics-based methods for structure prediction. We conclude by looking to the future of such comparisons between simulations and experiments.</p>","PeriodicalId":8270,"journal":{"name":"Annual review of biophysics and biomolecular structure","volume":"34 ","pages":"43-69"},"PeriodicalIF":0.0000,"publicationDate":"2005-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev.biophys.34.040204.144447","citationCount":"225","resultStr":"{\"title\":\"How well can simulation predict protein folding kinetics and thermodynamics?\",\"authors\":\"Christopher D Snow, Eric J Sorin, Young Min Rhee, Vijay S Pande\",\"doi\":\"10.1146/annurev.biophys.34.040204.144447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Simulation of protein folding has come a long way in five years. Notably, new quantitative comparisons with experiments for small, rapidly folding proteins have become possible. As the only way to validate simulation methodology, this achievement marks a significant advance. Here, we detail these recent achievements and ask whether simulations have indeed rendered quantitative predictions in several areas, including protein folding kinetics, thermodynamics, and physics-based methods for structure prediction. We conclude by looking to the future of such comparisons between simulations and experiments.</p>\",\"PeriodicalId\":8270,\"journal\":{\"name\":\"Annual review of biophysics and biomolecular structure\",\"volume\":\"34 \",\"pages\":\"43-69\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1146/annurev.biophys.34.040204.144447\",\"citationCount\":\"225\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of biophysics and biomolecular structure\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev.biophys.34.040204.144447\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of biophysics and biomolecular structure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/annurev.biophys.34.040204.144447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
How well can simulation predict protein folding kinetics and thermodynamics?
Simulation of protein folding has come a long way in five years. Notably, new quantitative comparisons with experiments for small, rapidly folding proteins have become possible. As the only way to validate simulation methodology, this achievement marks a significant advance. Here, we detail these recent achievements and ask whether simulations have indeed rendered quantitative predictions in several areas, including protein folding kinetics, thermodynamics, and physics-based methods for structure prediction. We conclude by looking to the future of such comparisons between simulations and experiments.