Markus Hausmann , Michael C. Corballis , Mara Fabri , Aldo Paggi , Jörg Lewald
{"title":"胼胝体切开术、胼胝体发育不全或脑半球切除术患者的侧化良好","authors":"Markus Hausmann , Michael C. Corballis , Mara Fabri , Aldo Paggi , Jörg Lewald","doi":"10.1016/j.cogbrainres.2005.08.008","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>The question of whether there is a right-hemisphere dominance in the processing of auditory spatial information in human cortex as well as the role of the corpus callosum in spatial hearing functions is still a matter of debate. Here, we approached this issue by investigating two late-callosotomized subjects and one subject with </span>agenesis of the corpus callosum, using a task of </span>sound lateralization<span> with variable interaural time differences<span><span>. For comparison, three subjects with left or right hemispherectomy were also tested by employing identical methods. Besides a significant reduction in their acuity, subjects with total or partial section of the corpus callosum exhibited a considerable leftward bias of sound lateralization compared to normal controls. No such bias was found in the subject with callosal agenesis, but merely a marginal reduction of general acuity. Also, one subject with complete resection of the left cerebral cortex showed virtually normal performance, whereas another subject with left hemispherectomy and one subject with right hemispherectomy exhibited severe deficits, with almost total loss of sound-lateralization ability. The results obtained in subjects with callosotomy indicate that the integrity of the corpus callosum is not indispensable for preservation of sound-lateralization ability. On the other hand, transcallosal </span>interhemispheric transfer of auditory information obviously plays a significant role in spatial hearing functions that depend on binaural cues. Moreover, these data are compatible with the general view of a dominance of the right cortical hemisphere in auditory space perception.</span></span></p></div>","PeriodicalId":100287,"journal":{"name":"Cognitive Brain Research","volume":"25 2","pages":"Pages 537-546"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.cogbrainres.2005.08.008","citationCount":"45","resultStr":"{\"title\":\"Sound lateralization in subjects with callosotomy, callosal agenesis, or hemispherectomy\",\"authors\":\"Markus Hausmann , Michael C. Corballis , Mara Fabri , Aldo Paggi , Jörg Lewald\",\"doi\":\"10.1016/j.cogbrainres.2005.08.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>The question of whether there is a right-hemisphere dominance in the processing of auditory spatial information in human cortex as well as the role of the corpus callosum in spatial hearing functions is still a matter of debate. Here, we approached this issue by investigating two late-callosotomized subjects and one subject with </span>agenesis of the corpus callosum, using a task of </span>sound lateralization<span> with variable interaural time differences<span><span>. For comparison, three subjects with left or right hemispherectomy were also tested by employing identical methods. Besides a significant reduction in their acuity, subjects with total or partial section of the corpus callosum exhibited a considerable leftward bias of sound lateralization compared to normal controls. No such bias was found in the subject with callosal agenesis, but merely a marginal reduction of general acuity. Also, one subject with complete resection of the left cerebral cortex showed virtually normal performance, whereas another subject with left hemispherectomy and one subject with right hemispherectomy exhibited severe deficits, with almost total loss of sound-lateralization ability. The results obtained in subjects with callosotomy indicate that the integrity of the corpus callosum is not indispensable for preservation of sound-lateralization ability. On the other hand, transcallosal </span>interhemispheric transfer of auditory information obviously plays a significant role in spatial hearing functions that depend on binaural cues. Moreover, these data are compatible with the general view of a dominance of the right cortical hemisphere in auditory space perception.</span></span></p></div>\",\"PeriodicalId\":100287,\"journal\":{\"name\":\"Cognitive Brain Research\",\"volume\":\"25 2\",\"pages\":\"Pages 537-546\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.cogbrainres.2005.08.008\",\"citationCount\":\"45\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Brain Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926641005002302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Brain Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926641005002302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sound lateralization in subjects with callosotomy, callosal agenesis, or hemispherectomy
The question of whether there is a right-hemisphere dominance in the processing of auditory spatial information in human cortex as well as the role of the corpus callosum in spatial hearing functions is still a matter of debate. Here, we approached this issue by investigating two late-callosotomized subjects and one subject with agenesis of the corpus callosum, using a task of sound lateralization with variable interaural time differences. For comparison, three subjects with left or right hemispherectomy were also tested by employing identical methods. Besides a significant reduction in their acuity, subjects with total or partial section of the corpus callosum exhibited a considerable leftward bias of sound lateralization compared to normal controls. No such bias was found in the subject with callosal agenesis, but merely a marginal reduction of general acuity. Also, one subject with complete resection of the left cerebral cortex showed virtually normal performance, whereas another subject with left hemispherectomy and one subject with right hemispherectomy exhibited severe deficits, with almost total loss of sound-lateralization ability. The results obtained in subjects with callosotomy indicate that the integrity of the corpus callosum is not indispensable for preservation of sound-lateralization ability. On the other hand, transcallosal interhemispheric transfer of auditory information obviously plays a significant role in spatial hearing functions that depend on binaural cues. Moreover, these data are compatible with the general view of a dominance of the right cortical hemisphere in auditory space perception.