{"title":"合成的新型苯并恶唑衍生物的抗伤害和抗炎活性。","authors":"Mansi L Patil, Swati S Gaikwad, Naresh J Gaikwad","doi":"10.2174/1871523020666210203103433","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Pain is an immunological response to an infection or inflammation and long-term use of pain management therapy includes the use of Nonsteroidal anti-inflammatory drugs, which is associated with the occurrence of toxicity as well as gastrointestinal bleeding. Therefore, the investigation of new analgesic and anti-inflammatory agents remains a major challenge.</p><p><strong>Aims: </strong>The objective of this research study is to undergo the pharmacological evaluation of newly synthesized benzoxazole derivatives. These novel derivatives were evaluated for anti-nociceptive, anti-inflammatory and cytotoxic activity using various in-vivo and ex-vivo methods Methods: The study was carried out using swiss mice (adult male) weighing between 20gm to 30gm and were divided into groups containing (n=6) six animals in each group for treatment. The anti-nociceptive activity was performed by using 0.1ml of 0.6% v/v acetic acid as nociception inducer and evaluated by the diminished number of abdominal writhes. The anti-inflammatory activity was done using 0.1 ml of 2% w/v Carrageenan induced paw edema method was observed which was evaluated by calculating the percent maximum possible effect. Histopathological evaluation and cytotoxic activity of the compounds were carried out.</p><p><strong>Results: </strong>The results of this research study revealed that synthesized derivatives (a, b, c, d and e) showed promising anti-nociceptive and anti-inflammatory effects along significantly higher cytotoxic activity in MCF-7 cell lines.</p><p><strong>Conclusion: </strong>It can be concluded that synthesized derivatives (a, b, c, d and e) have potential anti- nociceptive and anti-inflammatory effects along with cytotoxic activity and certain modification in structure may result in the potent activity.</p>","PeriodicalId":35423,"journal":{"name":"Anti-Inflammatory and Anti-Allergy Agents in Medicinal Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Anti-nociceptive and Anti-inflammatory Activity of Synthesized Novel Benzoxazole Derivatives.\",\"authors\":\"Mansi L Patil, Swati S Gaikwad, Naresh J Gaikwad\",\"doi\":\"10.2174/1871523020666210203103433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Pain is an immunological response to an infection or inflammation and long-term use of pain management therapy includes the use of Nonsteroidal anti-inflammatory drugs, which is associated with the occurrence of toxicity as well as gastrointestinal bleeding. Therefore, the investigation of new analgesic and anti-inflammatory agents remains a major challenge.</p><p><strong>Aims: </strong>The objective of this research study is to undergo the pharmacological evaluation of newly synthesized benzoxazole derivatives. These novel derivatives were evaluated for anti-nociceptive, anti-inflammatory and cytotoxic activity using various in-vivo and ex-vivo methods Methods: The study was carried out using swiss mice (adult male) weighing between 20gm to 30gm and were divided into groups containing (n=6) six animals in each group for treatment. The anti-nociceptive activity was performed by using 0.1ml of 0.6% v/v acetic acid as nociception inducer and evaluated by the diminished number of abdominal writhes. The anti-inflammatory activity was done using 0.1 ml of 2% w/v Carrageenan induced paw edema method was observed which was evaluated by calculating the percent maximum possible effect. Histopathological evaluation and cytotoxic activity of the compounds were carried out.</p><p><strong>Results: </strong>The results of this research study revealed that synthesized derivatives (a, b, c, d and e) showed promising anti-nociceptive and anti-inflammatory effects along significantly higher cytotoxic activity in MCF-7 cell lines.</p><p><strong>Conclusion: </strong>It can be concluded that synthesized derivatives (a, b, c, d and e) have potential anti- nociceptive and anti-inflammatory effects along with cytotoxic activity and certain modification in structure may result in the potent activity.</p>\",\"PeriodicalId\":35423,\"journal\":{\"name\":\"Anti-Inflammatory and Anti-Allergy Agents in Medicinal Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anti-Inflammatory and Anti-Allergy Agents in Medicinal Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1871523020666210203103433\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anti-Inflammatory and Anti-Allergy Agents in Medicinal Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1871523020666210203103433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Anti-nociceptive and Anti-inflammatory Activity of Synthesized Novel Benzoxazole Derivatives.
Introduction: Pain is an immunological response to an infection or inflammation and long-term use of pain management therapy includes the use of Nonsteroidal anti-inflammatory drugs, which is associated with the occurrence of toxicity as well as gastrointestinal bleeding. Therefore, the investigation of new analgesic and anti-inflammatory agents remains a major challenge.
Aims: The objective of this research study is to undergo the pharmacological evaluation of newly synthesized benzoxazole derivatives. These novel derivatives were evaluated for anti-nociceptive, anti-inflammatory and cytotoxic activity using various in-vivo and ex-vivo methods Methods: The study was carried out using swiss mice (adult male) weighing between 20gm to 30gm and were divided into groups containing (n=6) six animals in each group for treatment. The anti-nociceptive activity was performed by using 0.1ml of 0.6% v/v acetic acid as nociception inducer and evaluated by the diminished number of abdominal writhes. The anti-inflammatory activity was done using 0.1 ml of 2% w/v Carrageenan induced paw edema method was observed which was evaluated by calculating the percent maximum possible effect. Histopathological evaluation and cytotoxic activity of the compounds were carried out.
Results: The results of this research study revealed that synthesized derivatives (a, b, c, d and e) showed promising anti-nociceptive and anti-inflammatory effects along significantly higher cytotoxic activity in MCF-7 cell lines.
Conclusion: It can be concluded that synthesized derivatives (a, b, c, d and e) have potential anti- nociceptive and anti-inflammatory effects along with cytotoxic activity and certain modification in structure may result in the potent activity.
期刊介绍:
Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry aims to cover all the latest and outstanding developments in medicinal chemistry and rational drug design for the discovery of new anti-inflammatory & anti-allergy agents. Publishing a series of timely in-depth reviews written by leaders in the field covering a range of current topics, Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments in the field.