Massimo Cavallaro, Mark D Walsh, Matt Jones, James Teahan, Simone Tiberi, Bärbel Finkenstädt, Daniel Hebenstreit
{"title":"3 '-5 '串扰有助于转录突变。","authors":"Massimo Cavallaro, Mark D Walsh, Matt Jones, James Teahan, Simone Tiberi, Bärbel Finkenstädt, Daniel Hebenstreit","doi":"10.1186/s13059-020-02227-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Transcription in mammalian cells is a complex stochastic process involving shuttling of polymerase between genes and phase-separated liquid condensates. It occurs in bursts, which results in vastly different numbers of an mRNA species in isogenic cell populations. Several factors contributing to transcriptional bursting have been identified, usually classified as intrinsic, in other words local to single genes, or extrinsic, relating to the macroscopic state of the cell. However, some possible contributors have not been explored yet. Here, we focus on processes at the 3 <sup>'</sup> and 5 <sup>'</sup> ends of a gene that enable reinitiation of transcription upon termination.</p><p><strong>Results: </strong>Using Bayesian methodology, we measure the transcriptional bursting in inducible transgenes, showing that perturbation of polymerase shuttling typically reduces burst size, increases burst frequency, and thus limits transcriptional noise. Analysis based on paired-end tag sequencing (PolII ChIA-PET) suggests that this effect is genome wide. The observed noise patterns are also reproduced by a generative model that captures major characteristics of the polymerase flux between the ends of a gene and a phase-separated compartment.</p><p><strong>Conclusions: </strong>Interactions between the 3 <sup>'</sup> and 5 <sup>'</sup> ends of a gene, which facilitate polymerase recycling, are major contributors to transcriptional noise.</p>","PeriodicalId":48922,"journal":{"name":"Genome Biology","volume":null,"pages":null},"PeriodicalIF":12.3000,"publicationDate":"2021-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7860045/pdf/","citationCount":"0","resultStr":"{\"title\":\"3 <sup>'</sup>-5 <sup>'</sup> crosstalk contributes to transcriptional bursting.\",\"authors\":\"Massimo Cavallaro, Mark D Walsh, Matt Jones, James Teahan, Simone Tiberi, Bärbel Finkenstädt, Daniel Hebenstreit\",\"doi\":\"10.1186/s13059-020-02227-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Transcription in mammalian cells is a complex stochastic process involving shuttling of polymerase between genes and phase-separated liquid condensates. It occurs in bursts, which results in vastly different numbers of an mRNA species in isogenic cell populations. Several factors contributing to transcriptional bursting have been identified, usually classified as intrinsic, in other words local to single genes, or extrinsic, relating to the macroscopic state of the cell. However, some possible contributors have not been explored yet. Here, we focus on processes at the 3 <sup>'</sup> and 5 <sup>'</sup> ends of a gene that enable reinitiation of transcription upon termination.</p><p><strong>Results: </strong>Using Bayesian methodology, we measure the transcriptional bursting in inducible transgenes, showing that perturbation of polymerase shuttling typically reduces burst size, increases burst frequency, and thus limits transcriptional noise. Analysis based on paired-end tag sequencing (PolII ChIA-PET) suggests that this effect is genome wide. The observed noise patterns are also reproduced by a generative model that captures major characteristics of the polymerase flux between the ends of a gene and a phase-separated compartment.</p><p><strong>Conclusions: </strong>Interactions between the 3 <sup>'</sup> and 5 <sup>'</sup> ends of a gene, which facilitate polymerase recycling, are major contributors to transcriptional noise.</p>\",\"PeriodicalId\":48922,\"journal\":{\"name\":\"Genome Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":12.3000,\"publicationDate\":\"2021-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7860045/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13059-020-02227-5\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-020-02227-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
3 '-5 ' crosstalk contributes to transcriptional bursting.
Background: Transcription in mammalian cells is a complex stochastic process involving shuttling of polymerase between genes and phase-separated liquid condensates. It occurs in bursts, which results in vastly different numbers of an mRNA species in isogenic cell populations. Several factors contributing to transcriptional bursting have been identified, usually classified as intrinsic, in other words local to single genes, or extrinsic, relating to the macroscopic state of the cell. However, some possible contributors have not been explored yet. Here, we focus on processes at the 3 ' and 5 ' ends of a gene that enable reinitiation of transcription upon termination.
Results: Using Bayesian methodology, we measure the transcriptional bursting in inducible transgenes, showing that perturbation of polymerase shuttling typically reduces burst size, increases burst frequency, and thus limits transcriptional noise. Analysis based on paired-end tag sequencing (PolII ChIA-PET) suggests that this effect is genome wide. The observed noise patterns are also reproduced by a generative model that captures major characteristics of the polymerase flux between the ends of a gene and a phase-separated compartment.
Conclusions: Interactions between the 3 ' and 5 ' ends of a gene, which facilitate polymerase recycling, are major contributors to transcriptional noise.
期刊介绍:
Genome Biology is a leading research journal that focuses on the study of biology and biomedicine from a genomic and post-genomic standpoint. The journal consistently publishes outstanding research across various areas within these fields.
With an impressive impact factor of 12.3 (2022), Genome Biology has earned its place as the 3rd highest-ranked research journal in the Genetics and Heredity category, according to Thomson Reuters. Additionally, it is ranked 2nd among research journals in the Biotechnology and Applied Microbiology category. It is important to note that Genome Biology is the top-ranking open access journal in this category.
In summary, Genome Biology sets a high standard for scientific publications in the field, showcasing cutting-edge research and earning recognition among its peers.