Noé Brasier, Andreas Widmer, Michael Osthoff, Markus Mutke, Fiorangelo De Ieso, Pascale Brasier-Lutz, Kitty Brown, Linxing Yao, Corey D Broeckling, Jessica Prenni, Jens Eckstein
{"title":"检测汗液中的万古霉素:抗生素组织穿透的新一代数字替代标记:试点研究。","authors":"Noé Brasier, Andreas Widmer, Michael Osthoff, Markus Mutke, Fiorangelo De Ieso, Pascale Brasier-Lutz, Kitty Brown, Linxing Yao, Corey D Broeckling, Jessica Prenni, Jens Eckstein","doi":"10.1159/000512947","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Assuring adequate antibiotic tissue concentrations at the point of infection, especially in skin and soft tissue infections, is pivotal for an effective treatment and cure. Despite the global issue, a reliable AB monitoring test is missing. Inadequate antibiotic treatment leads to the development of antimicrobial resistances and toxic side effects. β-lactam antibiotics were already detected in sweat of patients treated with the respective antibiotics intravenously before. With the emergence of smartphone-based biosensors to analyse sweat on the spot of need, next-generation molecular digital biomarkers will be increasingly available for a non-invasive pharmacotherapy monitoring.</p><p><strong>Objective: </strong>Here, we investigated if the glycopeptide antibiotic vancomycin is detectable in sweat samples of in-patients treated with intravenous vancomycin.</p><p><strong>Methods: </strong>Eccrine sweat samples were collected using the Macroduct Sweat Collector®. Along every sweat sample, a blood sample was taken. Bio-fluid analysis was performed by Ultra-high Pressure Liquid Chromatograph-Tandem Quadrupole Mass Spectrometry coupled with tandem mass spectrometry.</p><p><strong>Results: </strong>A total of 5 patients were included. Results demonstrate that vancomycin was detected in 5 out of 5 sweat samples. Specifically, vancomycin concentrations ranged from 0.011 to 0.118 mg/L in sweat and from 4.7 to 8.5 mg/L in blood.</p><p><strong>Conclusion: </strong>Our results serve as proof-of-concept that vancomycin is detectable in eccrine sweat and may serve as a surrogate marker for antibiotic tissue penetration. A targeted vancomycin treatment is crucial in patients with repetitive need for antibiotics and a variable antibiotic distribution such as in peripheral artery disease to optimize treatment effectiveness. If combined with on-skin smartphone-based biosensors and smartphone applications, the detection of antibiotic concentrations in sweat might enable a first digital, on-spot, lab-independent and non-invasive therapeutic drug monitoring in skin and soft tissue infections.</p>","PeriodicalId":11242,"journal":{"name":"Digital Biomarkers","volume":"5 1","pages":"24-28"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7879282/pdf/dib-0005-0024.pdf","citationCount":"0","resultStr":"{\"title\":\"The Detection of Vancomycin in Sweat: A Next-Generation Digital Surrogate Marker for Antibiotic Tissue Penetration: A Pilot Study.\",\"authors\":\"Noé Brasier, Andreas Widmer, Michael Osthoff, Markus Mutke, Fiorangelo De Ieso, Pascale Brasier-Lutz, Kitty Brown, Linxing Yao, Corey D Broeckling, Jessica Prenni, Jens Eckstein\",\"doi\":\"10.1159/000512947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Assuring adequate antibiotic tissue concentrations at the point of infection, especially in skin and soft tissue infections, is pivotal for an effective treatment and cure. Despite the global issue, a reliable AB monitoring test is missing. Inadequate antibiotic treatment leads to the development of antimicrobial resistances and toxic side effects. β-lactam antibiotics were already detected in sweat of patients treated with the respective antibiotics intravenously before. With the emergence of smartphone-based biosensors to analyse sweat on the spot of need, next-generation molecular digital biomarkers will be increasingly available for a non-invasive pharmacotherapy monitoring.</p><p><strong>Objective: </strong>Here, we investigated if the glycopeptide antibiotic vancomycin is detectable in sweat samples of in-patients treated with intravenous vancomycin.</p><p><strong>Methods: </strong>Eccrine sweat samples were collected using the Macroduct Sweat Collector®. Along every sweat sample, a blood sample was taken. Bio-fluid analysis was performed by Ultra-high Pressure Liquid Chromatograph-Tandem Quadrupole Mass Spectrometry coupled with tandem mass spectrometry.</p><p><strong>Results: </strong>A total of 5 patients were included. Results demonstrate that vancomycin was detected in 5 out of 5 sweat samples. Specifically, vancomycin concentrations ranged from 0.011 to 0.118 mg/L in sweat and from 4.7 to 8.5 mg/L in blood.</p><p><strong>Conclusion: </strong>Our results serve as proof-of-concept that vancomycin is detectable in eccrine sweat and may serve as a surrogate marker for antibiotic tissue penetration. A targeted vancomycin treatment is crucial in patients with repetitive need for antibiotics and a variable antibiotic distribution such as in peripheral artery disease to optimize treatment effectiveness. If combined with on-skin smartphone-based biosensors and smartphone applications, the detection of antibiotic concentrations in sweat might enable a first digital, on-spot, lab-independent and non-invasive therapeutic drug monitoring in skin and soft tissue infections.</p>\",\"PeriodicalId\":11242,\"journal\":{\"name\":\"Digital Biomarkers\",\"volume\":\"5 1\",\"pages\":\"24-28\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7879282/pdf/dib-0005-0024.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Biomarkers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000512947\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Biomarkers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000512947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
The Detection of Vancomycin in Sweat: A Next-Generation Digital Surrogate Marker for Antibiotic Tissue Penetration: A Pilot Study.
Background: Assuring adequate antibiotic tissue concentrations at the point of infection, especially in skin and soft tissue infections, is pivotal for an effective treatment and cure. Despite the global issue, a reliable AB monitoring test is missing. Inadequate antibiotic treatment leads to the development of antimicrobial resistances and toxic side effects. β-lactam antibiotics were already detected in sweat of patients treated with the respective antibiotics intravenously before. With the emergence of smartphone-based biosensors to analyse sweat on the spot of need, next-generation molecular digital biomarkers will be increasingly available for a non-invasive pharmacotherapy monitoring.
Objective: Here, we investigated if the glycopeptide antibiotic vancomycin is detectable in sweat samples of in-patients treated with intravenous vancomycin.
Methods: Eccrine sweat samples were collected using the Macroduct Sweat Collector®. Along every sweat sample, a blood sample was taken. Bio-fluid analysis was performed by Ultra-high Pressure Liquid Chromatograph-Tandem Quadrupole Mass Spectrometry coupled with tandem mass spectrometry.
Results: A total of 5 patients were included. Results demonstrate that vancomycin was detected in 5 out of 5 sweat samples. Specifically, vancomycin concentrations ranged from 0.011 to 0.118 mg/L in sweat and from 4.7 to 8.5 mg/L in blood.
Conclusion: Our results serve as proof-of-concept that vancomycin is detectable in eccrine sweat and may serve as a surrogate marker for antibiotic tissue penetration. A targeted vancomycin treatment is crucial in patients with repetitive need for antibiotics and a variable antibiotic distribution such as in peripheral artery disease to optimize treatment effectiveness. If combined with on-skin smartphone-based biosensors and smartphone applications, the detection of antibiotic concentrations in sweat might enable a first digital, on-spot, lab-independent and non-invasive therapeutic drug monitoring in skin and soft tissue infections.