{"title":"极低频电磁场参数对人乳腺癌增殖的影响。","authors":"Min-Haw Wang, Kuan-Wei Chen, Ding-Xung Ni, Hao-Jha Fang, Ling-Sheng Jang, Chun-Hong Chen","doi":"10.1080/15368378.2021.1891093","DOIUrl":null,"url":null,"abstract":"<p><p>Extremely low-frequency electromagnetic field (ELF-EMF) exposures influence many biological systems. These effects are mainly related to the intensity, duration, frequency, and pattern of the ELF-EMF. Our intent was to characterize the effect of specific pulsed electromagnetic fields on the in vitro proliferation of MCF-7 adenocarcinoma and MDA-MB-231 breast cancer cell lines and one non-cancerous M10 breast epithelial cell line. The following four important parameters of ELF-EMF were examined: frequencies (7.83 ± 0.3, 23.49 ± 0.3, and 39.15 ± 0.3 Hz), flux density (0.5 and 1 mT), exposure duration (12, 24, and 48 h), and the exposure methodology (continuous exposure versus switching exposure). The viability of MDA-MB-231 cells exposed to the optimized ELF-EMF pattern (7.83 ± 0.3 Hz, 1 mT, and 6 h switching exposure) was 40.1%. By contrast, the optimized ELF-EMF parameters that were most cytotoxic to breast cancer MDA-MB-231 cells were not damaging to normal M10 cells. In vitro studies also showed that exposure of MDA-MB-231 cells to the optimized ELF-EMF pattern promoted Ca<sup>2+</sup> influx and resulted in apoptosis. These data confirm that exposure to this specific ELF-EMF pattern can influence cellular processes and inhibit cancer cell growth. The specific ELF-EMF pattern determined in this study may provide a potential anti-cancer treatment in the future.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":"40 3","pages":"384-392"},"PeriodicalIF":1.6000,"publicationDate":"2021-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15368378.2021.1891093","citationCount":"11","resultStr":"{\"title\":\"Effect of extremely low frequency electromagnetic field parameters on the proliferation of human breast cancer.\",\"authors\":\"Min-Haw Wang, Kuan-Wei Chen, Ding-Xung Ni, Hao-Jha Fang, Ling-Sheng Jang, Chun-Hong Chen\",\"doi\":\"10.1080/15368378.2021.1891093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Extremely low-frequency electromagnetic field (ELF-EMF) exposures influence many biological systems. These effects are mainly related to the intensity, duration, frequency, and pattern of the ELF-EMF. Our intent was to characterize the effect of specific pulsed electromagnetic fields on the in vitro proliferation of MCF-7 adenocarcinoma and MDA-MB-231 breast cancer cell lines and one non-cancerous M10 breast epithelial cell line. The following four important parameters of ELF-EMF were examined: frequencies (7.83 ± 0.3, 23.49 ± 0.3, and 39.15 ± 0.3 Hz), flux density (0.5 and 1 mT), exposure duration (12, 24, and 48 h), and the exposure methodology (continuous exposure versus switching exposure). The viability of MDA-MB-231 cells exposed to the optimized ELF-EMF pattern (7.83 ± 0.3 Hz, 1 mT, and 6 h switching exposure) was 40.1%. By contrast, the optimized ELF-EMF parameters that were most cytotoxic to breast cancer MDA-MB-231 cells were not damaging to normal M10 cells. In vitro studies also showed that exposure of MDA-MB-231 cells to the optimized ELF-EMF pattern promoted Ca<sup>2+</sup> influx and resulted in apoptosis. These data confirm that exposure to this specific ELF-EMF pattern can influence cellular processes and inhibit cancer cell growth. The specific ELF-EMF pattern determined in this study may provide a potential anti-cancer treatment in the future.</p>\",\"PeriodicalId\":50544,\"journal\":{\"name\":\"Electromagnetic Biology and Medicine\",\"volume\":\"40 3\",\"pages\":\"384-392\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2021-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15368378.2021.1891093\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electromagnetic Biology and Medicine\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/15368378.2021.1891093\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/2/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electromagnetic Biology and Medicine","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15368378.2021.1891093","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/2/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
Effect of extremely low frequency electromagnetic field parameters on the proliferation of human breast cancer.
Extremely low-frequency electromagnetic field (ELF-EMF) exposures influence many biological systems. These effects are mainly related to the intensity, duration, frequency, and pattern of the ELF-EMF. Our intent was to characterize the effect of specific pulsed electromagnetic fields on the in vitro proliferation of MCF-7 adenocarcinoma and MDA-MB-231 breast cancer cell lines and one non-cancerous M10 breast epithelial cell line. The following four important parameters of ELF-EMF were examined: frequencies (7.83 ± 0.3, 23.49 ± 0.3, and 39.15 ± 0.3 Hz), flux density (0.5 and 1 mT), exposure duration (12, 24, and 48 h), and the exposure methodology (continuous exposure versus switching exposure). The viability of MDA-MB-231 cells exposed to the optimized ELF-EMF pattern (7.83 ± 0.3 Hz, 1 mT, and 6 h switching exposure) was 40.1%. By contrast, the optimized ELF-EMF parameters that were most cytotoxic to breast cancer MDA-MB-231 cells were not damaging to normal M10 cells. In vitro studies also showed that exposure of MDA-MB-231 cells to the optimized ELF-EMF pattern promoted Ca2+ influx and resulted in apoptosis. These data confirm that exposure to this specific ELF-EMF pattern can influence cellular processes and inhibit cancer cell growth. The specific ELF-EMF pattern determined in this study may provide a potential anti-cancer treatment in the future.
期刊介绍:
Aims & Scope: Electromagnetic Biology and Medicine, publishes peer-reviewed research articles on the biological effects and medical applications of non-ionizing electromagnetic fields (from extremely-low frequency to radiofrequency). Topic examples include in vitro and in vivo studies, epidemiological investigation, mechanism and mode of interaction between non-ionizing electromagnetic fields and biological systems. In addition to publishing original articles, the journal also publishes meeting summaries and reports, and reviews on selected topics.