Cynthia Sámano, Rodrigo González-Barrios, Mariana Castro-Azpíroz, Daniela Torres-García, José A Ocampo-Cervantes, Jimena Otero-Negrete, Ernesto Soto-Reyes
{"title":"蝾螈再生的基因组学和表观基因组学。","authors":"Cynthia Sámano, Rodrigo González-Barrios, Mariana Castro-Azpíroz, Daniela Torres-García, José A Ocampo-Cervantes, Jimena Otero-Negrete, Ernesto Soto-Reyes","doi":"10.1387/ijdb.200276cs","DOIUrl":null,"url":null,"abstract":"<p><p>The axolotl (<i>Ambystoma mexicanum)</i> has been a widely studied organism due to its capacity to regenerate most of its cells, tissues and whole-body parts. Since its genome was sequenced, several molecular tools have been developed to study the mechanisms behind this outstanding and extraordinary ability. The complexity of its genome due to its sheer size and the disproportionate expansion of a large number of repetitive elements, may be a key factor at play during tissue remodeling and regeneration mechanisms. Transcriptomic analysis has provided information to identify candidate genes networks and pathways that might define successful or failed tissue regeneration. Nevertheless, the epigenetic machinery that may participate in this phenomenon has largely not been studied. In this review, we outline a broad overview of both genetic and epigenetic molecular processes related to regeneration in axolotl, from the macroscopic to the molecular level. We also explore the epigenetic mechanisms behind regenerative pathways, and its potential importance in future regeneration research. Altogether, understanding the genomics and global regulation in axolotl will be key for elucidating the special biology of this organism and the fantastic phenomenon that is regeneration.</p>","PeriodicalId":50329,"journal":{"name":"International Journal of Developmental Biology","volume":"65 7-8-9","pages":"465-474"},"PeriodicalIF":1.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Genomics and epigenomics of axolotl regeneration.\",\"authors\":\"Cynthia Sámano, Rodrigo González-Barrios, Mariana Castro-Azpíroz, Daniela Torres-García, José A Ocampo-Cervantes, Jimena Otero-Negrete, Ernesto Soto-Reyes\",\"doi\":\"10.1387/ijdb.200276cs\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The axolotl (<i>Ambystoma mexicanum)</i> has been a widely studied organism due to its capacity to regenerate most of its cells, tissues and whole-body parts. Since its genome was sequenced, several molecular tools have been developed to study the mechanisms behind this outstanding and extraordinary ability. The complexity of its genome due to its sheer size and the disproportionate expansion of a large number of repetitive elements, may be a key factor at play during tissue remodeling and regeneration mechanisms. Transcriptomic analysis has provided information to identify candidate genes networks and pathways that might define successful or failed tissue regeneration. Nevertheless, the epigenetic machinery that may participate in this phenomenon has largely not been studied. In this review, we outline a broad overview of both genetic and epigenetic molecular processes related to regeneration in axolotl, from the macroscopic to the molecular level. We also explore the epigenetic mechanisms behind regenerative pathways, and its potential importance in future regeneration research. Altogether, understanding the genomics and global regulation in axolotl will be key for elucidating the special biology of this organism and the fantastic phenomenon that is regeneration.</p>\",\"PeriodicalId\":50329,\"journal\":{\"name\":\"International Journal of Developmental Biology\",\"volume\":\"65 7-8-9\",\"pages\":\"465-474\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Developmental Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1387/ijdb.200276cs\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Developmental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1387/ijdb.200276cs","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
The axolotl (Ambystoma mexicanum) has been a widely studied organism due to its capacity to regenerate most of its cells, tissues and whole-body parts. Since its genome was sequenced, several molecular tools have been developed to study the mechanisms behind this outstanding and extraordinary ability. The complexity of its genome due to its sheer size and the disproportionate expansion of a large number of repetitive elements, may be a key factor at play during tissue remodeling and regeneration mechanisms. Transcriptomic analysis has provided information to identify candidate genes networks and pathways that might define successful or failed tissue regeneration. Nevertheless, the epigenetic machinery that may participate in this phenomenon has largely not been studied. In this review, we outline a broad overview of both genetic and epigenetic molecular processes related to regeneration in axolotl, from the macroscopic to the molecular level. We also explore the epigenetic mechanisms behind regenerative pathways, and its potential importance in future regeneration research. Altogether, understanding the genomics and global regulation in axolotl will be key for elucidating the special biology of this organism and the fantastic phenomenon that is regeneration.
期刊介绍:
The International Journal of Developmental Biology (ISSN: 0214-
6282) is an independent, not for profit scholarly journal, published by
scientists, for scientists. The journal publishes papers which throw
light on our understanding of animal and plant developmental mechanisms in health and disease and, in particular, research which elucidates the developmental principles underlying stem cell properties
and cancer. Technical, historical or theoretical approaches also fall
within the scope of the journal. Criteria for acceptance include scientific excellence, novelty and quality of presentation of data and illustrations. Advantages of publishing in the journal include: rapid
publication; free unlimited color reproduction; no page charges; free
publication of online supplementary material; free publication of audio
files (MP3 type); one-to-one personalized attention at all stages
during the editorial process. An easy online submission facility and an
open online access option, by means of which papers can be published without any access restrictions. In keeping with its mission, the
journal offers free online subscriptions to academic institutions in
developing countries.