Rodolfo Solís-Vivanco, Alejandra Mondragón-Maya, Francisco Reyes-Madrigal, Camilo de la Fuente-Sandoval
{"title":"从未接受过药物治疗的首发精神病患者与新奇相关的θ振荡和P3a受损。","authors":"Rodolfo Solís-Vivanco, Alejandra Mondragón-Maya, Francisco Reyes-Madrigal, Camilo de la Fuente-Sandoval","doi":"10.1038/s41537-021-00146-3","DOIUrl":null,"url":null,"abstract":"<p><p>We explored the neurophysiological activity underlying auditory novelty detection in antipsychotic-naive patients with a first episode of psychosis (FEP). Fifteen patients with a non-affective FEP and 13 healthy controls underwent an active involuntary attention task along with an EEG acquisition. Time-frequency representations of power, phase locking, and fronto-parietal connectivity were calculated. The P3a event-related potential was extracted as well. Compared to controls, the FEP group showed reduced theta phase-locking and fronto-parietal connectivity evoked by deviant stimuli. Also, the P3a amplitude was significantly reduced. Moreover, reduced theta connectivity was associated with more severe negative symptoms within the FEP group. Reduced activity (phase-locking and connectivity) of novelty-related theta oscillations, along with P3a reduction, may represent a failure to synchronize large-scale neural populations closely related to fronto-parietal attentional networks, and might be explored as a potential biomarker of disease severity in patients with emerging psychosis, given its association with negative symptoms.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2021-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7910533/pdf/","citationCount":"0","resultStr":"{\"title\":\"Impairment of novelty-related theta oscillations and P3a in never medicated first-episode psychosis patients.\",\"authors\":\"Rodolfo Solís-Vivanco, Alejandra Mondragón-Maya, Francisco Reyes-Madrigal, Camilo de la Fuente-Sandoval\",\"doi\":\"10.1038/s41537-021-00146-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We explored the neurophysiological activity underlying auditory novelty detection in antipsychotic-naive patients with a first episode of psychosis (FEP). Fifteen patients with a non-affective FEP and 13 healthy controls underwent an active involuntary attention task along with an EEG acquisition. Time-frequency representations of power, phase locking, and fronto-parietal connectivity were calculated. The P3a event-related potential was extracted as well. Compared to controls, the FEP group showed reduced theta phase-locking and fronto-parietal connectivity evoked by deviant stimuli. Also, the P3a amplitude was significantly reduced. Moreover, reduced theta connectivity was associated with more severe negative symptoms within the FEP group. Reduced activity (phase-locking and connectivity) of novelty-related theta oscillations, along with P3a reduction, may represent a failure to synchronize large-scale neural populations closely related to fronto-parietal attentional networks, and might be explored as a potential biomarker of disease severity in patients with emerging psychosis, given its association with negative symptoms.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2021-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7910533/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41537-021-00146-3\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41537-021-00146-3","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Impairment of novelty-related theta oscillations and P3a in never medicated first-episode psychosis patients.
We explored the neurophysiological activity underlying auditory novelty detection in antipsychotic-naive patients with a first episode of psychosis (FEP). Fifteen patients with a non-affective FEP and 13 healthy controls underwent an active involuntary attention task along with an EEG acquisition. Time-frequency representations of power, phase locking, and fronto-parietal connectivity were calculated. The P3a event-related potential was extracted as well. Compared to controls, the FEP group showed reduced theta phase-locking and fronto-parietal connectivity evoked by deviant stimuli. Also, the P3a amplitude was significantly reduced. Moreover, reduced theta connectivity was associated with more severe negative symptoms within the FEP group. Reduced activity (phase-locking and connectivity) of novelty-related theta oscillations, along with P3a reduction, may represent a failure to synchronize large-scale neural populations closely related to fronto-parietal attentional networks, and might be explored as a potential biomarker of disease severity in patients with emerging psychosis, given its association with negative symptoms.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.