Barbara A. Ambrose, Tynisha L. Smalls, Cecilia Zumajo-Cardona
{"title":"所有II型经典MADS-box基因均广泛而离散地表达于柏树的营养组织和生殖组织中","authors":"Barbara A. Ambrose, Tynisha L. Smalls, Cecilia Zumajo-Cardona","doi":"10.1111/ede.12375","DOIUrl":null,"url":null,"abstract":"<p>The MADS-box genes constitute a large transcription factor family that appear to have evolved by duplication and diversification of function. Two types of MADS-box genes are distinguished throughout eukaryotes, types I and II. Type II classic MADS-box genes, also known as MIKC-type, are key developmental regulators in flowering plants and are particularly well-studied for their role in floral organ specification. However, very little is known about the role that these genes might play outside of the flowering plants. We investigated the evolution of type II classic MADS-box genes across land plants by performing a maximum likelihood analysis with a particular focus on lycophytes. Here, we present the expression patterns of all three type II classic MADS-box homologs throughout plant development in the lycophyte <i>Selaginella moellendorffii</i>: <i>SmMADS1</i>, <i>SmMADS3</i>, and <i>SmMADS6</i>. We used scanning electron microscopy and histological analyses to define stages of sporangia development in <i>S. moellendorffii</i>. We performed phylogenetic analyses of this gene lineage across land plants and found that lycophyte sequences appeared before the multiple duplication events that gave rise to the major MADS-box gene lineages in seed plants. Our expression analyses by in situ hybridization show that all type II classic MADS-box genes in <i>S. moellendorffii</i> have broad but distinct patterns of expression in vegetative and reproductive tissues, where <i>SmMADS1</i> and <i>SmMADS6</i> only differ during late sporangia development. The broad expression during <i>S. moellendorffii</i> development suggests that MADS-box genes have undergone neofunctionalization and subfunctionalization after duplication events in seed plants.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/ede.12375","citationCount":"5","resultStr":"{\"title\":\"All type II classic MADS-box genes in the lycophyte Selaginella moellendorffii are broadly yet discretely expressed in vegetative and reproductive tissues\",\"authors\":\"Barbara A. Ambrose, Tynisha L. Smalls, Cecilia Zumajo-Cardona\",\"doi\":\"10.1111/ede.12375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The MADS-box genes constitute a large transcription factor family that appear to have evolved by duplication and diversification of function. Two types of MADS-box genes are distinguished throughout eukaryotes, types I and II. Type II classic MADS-box genes, also known as MIKC-type, are key developmental regulators in flowering plants and are particularly well-studied for their role in floral organ specification. However, very little is known about the role that these genes might play outside of the flowering plants. We investigated the evolution of type II classic MADS-box genes across land plants by performing a maximum likelihood analysis with a particular focus on lycophytes. Here, we present the expression patterns of all three type II classic MADS-box homologs throughout plant development in the lycophyte <i>Selaginella moellendorffii</i>: <i>SmMADS1</i>, <i>SmMADS3</i>, and <i>SmMADS6</i>. We used scanning electron microscopy and histological analyses to define stages of sporangia development in <i>S. moellendorffii</i>. We performed phylogenetic analyses of this gene lineage across land plants and found that lycophyte sequences appeared before the multiple duplication events that gave rise to the major MADS-box gene lineages in seed plants. Our expression analyses by in situ hybridization show that all type II classic MADS-box genes in <i>S. moellendorffii</i> have broad but distinct patterns of expression in vegetative and reproductive tissues, where <i>SmMADS1</i> and <i>SmMADS6</i> only differ during late sporangia development. The broad expression during <i>S. moellendorffii</i> development suggests that MADS-box genes have undergone neofunctionalization and subfunctionalization after duplication events in seed plants.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2021-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/ede.12375\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ede.12375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ede.12375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
All type II classic MADS-box genes in the lycophyte Selaginella moellendorffii are broadly yet discretely expressed in vegetative and reproductive tissues
The MADS-box genes constitute a large transcription factor family that appear to have evolved by duplication and diversification of function. Two types of MADS-box genes are distinguished throughout eukaryotes, types I and II. Type II classic MADS-box genes, also known as MIKC-type, are key developmental regulators in flowering plants and are particularly well-studied for their role in floral organ specification. However, very little is known about the role that these genes might play outside of the flowering plants. We investigated the evolution of type II classic MADS-box genes across land plants by performing a maximum likelihood analysis with a particular focus on lycophytes. Here, we present the expression patterns of all three type II classic MADS-box homologs throughout plant development in the lycophyte Selaginella moellendorffii: SmMADS1, SmMADS3, and SmMADS6. We used scanning electron microscopy and histological analyses to define stages of sporangia development in S. moellendorffii. We performed phylogenetic analyses of this gene lineage across land plants and found that lycophyte sequences appeared before the multiple duplication events that gave rise to the major MADS-box gene lineages in seed plants. Our expression analyses by in situ hybridization show that all type II classic MADS-box genes in S. moellendorffii have broad but distinct patterns of expression in vegetative and reproductive tissues, where SmMADS1 and SmMADS6 only differ during late sporangia development. The broad expression during S. moellendorffii development suggests that MADS-box genes have undergone neofunctionalization and subfunctionalization after duplication events in seed plants.