表观遗传条件和成人心脏干细胞和祖细胞的心肌细胞分化过程中生化和物理刺激的相互作用。

IF 1.5 4区 生物学 Q4 CELL BIOLOGY Integrative Biology Pub Date : 2021-03-17 DOI:10.1093/intbio/zyab003
Wendy R Zeng, Pauline M Doran
{"title":"表观遗传条件和成人心脏干细胞和祖细胞的心肌细胞分化过程中生化和物理刺激的相互作用。","authors":"Wendy R Zeng,&nbsp;Pauline M Doran","doi":"10.1093/intbio/zyab003","DOIUrl":null,"url":null,"abstract":"<p><p>Mixed populations of cardiosphere-derived stem and progenitor cells containing proliferative and cardiomyogenically committed cells were obtained from adult rat hearts. The cells were cultured in either static 2D monolayers or dynamic 3D scaffold systems with fluid flow. Cardiomyocyte lineage commitment in terms of GATA4 and Nkx2.5 expression was significantly enhanced in the dynamic 3D cultures compared with static 2D conditions. Treatment of the cells with 5-azacytidine (5-aza) produced different responses in the two culture systems, as activity of this chemical epigenetic conditioning agent depended on the cell attachment and hydrodynamic conditions provided during culture. Cell growth was unaffected by 5-aza in the static 2D cultures but was significantly reduced under dynamic 3D conditions relative to untreated controls. Myogenic differentiation measured as Mef2c expression was markedly upregulated by 5-aza in the dynamic 3D cultures but downregulated in the static 2D cultures. The ability of the physical environment to modulate the cellular cardiomyogenic response to 5-aza underscores the interactivity of biochemical and physical stimuli applied for cell differentiation. Accordingly, observations about the efficacy of 5-aza as a cardiomyocyte induction agent may not be applicable across different culture systems. Overall, use of dynamic 3D rather than static 2D culture was more beneficial for cardio-specific myogenesis than 5-aza treatment, which generated a more ambiguous differentiation response.</p>","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"13 3","pages":"73-85"},"PeriodicalIF":1.5000,"publicationDate":"2021-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interactivity of biochemical and physical stimuli during epigenetic conditioning and cardiomyocytic differentiation of stem and progenitor cells derived from adult hearts.\",\"authors\":\"Wendy R Zeng,&nbsp;Pauline M Doran\",\"doi\":\"10.1093/intbio/zyab003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mixed populations of cardiosphere-derived stem and progenitor cells containing proliferative and cardiomyogenically committed cells were obtained from adult rat hearts. The cells were cultured in either static 2D monolayers or dynamic 3D scaffold systems with fluid flow. Cardiomyocyte lineage commitment in terms of GATA4 and Nkx2.5 expression was significantly enhanced in the dynamic 3D cultures compared with static 2D conditions. Treatment of the cells with 5-azacytidine (5-aza) produced different responses in the two culture systems, as activity of this chemical epigenetic conditioning agent depended on the cell attachment and hydrodynamic conditions provided during culture. Cell growth was unaffected by 5-aza in the static 2D cultures but was significantly reduced under dynamic 3D conditions relative to untreated controls. Myogenic differentiation measured as Mef2c expression was markedly upregulated by 5-aza in the dynamic 3D cultures but downregulated in the static 2D cultures. The ability of the physical environment to modulate the cellular cardiomyogenic response to 5-aza underscores the interactivity of biochemical and physical stimuli applied for cell differentiation. Accordingly, observations about the efficacy of 5-aza as a cardiomyocyte induction agent may not be applicable across different culture systems. Overall, use of dynamic 3D rather than static 2D culture was more beneficial for cardio-specific myogenesis than 5-aza treatment, which generated a more ambiguous differentiation response.</p>\",\"PeriodicalId\":80,\"journal\":{\"name\":\"Integrative Biology\",\"volume\":\"13 3\",\"pages\":\"73-85\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrative Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/intbio/zyab003\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/intbio/zyab003","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

从成年大鼠心脏中获得了含有增殖细胞和心肌生成细胞的心球干细胞和祖细胞的混合群体。细胞在静态二维单层或动态三维支架系统中培养。与静态2D条件相比,动态3D培养中GATA4和Nkx2.5表达的心肌细胞谱系承诺显著增强。5-氮杂胞苷(5-aza)处理细胞在两种培养体系中产生不同的反应,因为这种化学表观遗传调节剂的活性取决于细胞附着和培养过程中提供的流体动力条件。在静态2D培养中,细胞生长不受5-aza的影响,但在动态3D条件下,与未处理的对照组相比,细胞生长明显减少。Mef2c表达在动态3D培养中被5-aza显著上调,而在静态2D培养中被下调。物理环境调节细胞对5-aza的心肌生成反应的能力强调了用于细胞分化的生化和物理刺激的相互作用。因此,关于5-aza作为心肌细胞诱导剂的疗效的观察结果可能不适用于不同的培养体系。总的来说,使用动态3D而不是静态2D培养比5-aza治疗更有利于心脏特异性肌生成,后者产生的分化反应更模糊。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interactivity of biochemical and physical stimuli during epigenetic conditioning and cardiomyocytic differentiation of stem and progenitor cells derived from adult hearts.

Mixed populations of cardiosphere-derived stem and progenitor cells containing proliferative and cardiomyogenically committed cells were obtained from adult rat hearts. The cells were cultured in either static 2D monolayers or dynamic 3D scaffold systems with fluid flow. Cardiomyocyte lineage commitment in terms of GATA4 and Nkx2.5 expression was significantly enhanced in the dynamic 3D cultures compared with static 2D conditions. Treatment of the cells with 5-azacytidine (5-aza) produced different responses in the two culture systems, as activity of this chemical epigenetic conditioning agent depended on the cell attachment and hydrodynamic conditions provided during culture. Cell growth was unaffected by 5-aza in the static 2D cultures but was significantly reduced under dynamic 3D conditions relative to untreated controls. Myogenic differentiation measured as Mef2c expression was markedly upregulated by 5-aza in the dynamic 3D cultures but downregulated in the static 2D cultures. The ability of the physical environment to modulate the cellular cardiomyogenic response to 5-aza underscores the interactivity of biochemical and physical stimuli applied for cell differentiation. Accordingly, observations about the efficacy of 5-aza as a cardiomyocyte induction agent may not be applicable across different culture systems. Overall, use of dynamic 3D rather than static 2D culture was more beneficial for cardio-specific myogenesis than 5-aza treatment, which generated a more ambiguous differentiation response.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Integrative Biology
Integrative Biology 生物-细胞生物学
CiteScore
4.90
自引率
0.00%
发文量
15
审稿时长
1 months
期刊介绍: Integrative Biology publishes original biological research based on innovative experimental and theoretical methodologies that answer biological questions. The journal is multi- and inter-disciplinary, calling upon expertise and technologies from the physical sciences, engineering, computation, imaging, and mathematics to address critical questions in biological systems. Research using experimental or computational quantitative technologies to characterise biological systems at the molecular, cellular, tissue and population levels is welcomed. Of particular interest are submissions contributing to quantitative understanding of how component properties at one level in the dimensional scale (nano to micro) determine system behaviour at a higher level of complexity. Studies of synthetic systems, whether used to elucidate fundamental principles of biological function or as the basis for novel applications are also of interest.
期刊最新文献
Modeling Shiga toxin-induced human renal-specific microvascular injury. The cellular zeta potential: cell electrophysiology beyond the membrane. Correction to: Mimicking the topography of the epidermal-dermal interface with elastomer substrates. Hub genes, key miRNAs and interaction analyses in type 2 diabetes mellitus: an integrative in silico approach. A Vicsek-type model of confined cancer cells with variable clustering affinities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1