{"title":"使用标准x射线图像创建3D数字骨模型和患者匹配的指南,以帮助全膝关节置换术中的植入物定位和大小。","authors":"Vincent Massé, Raju S Ghate","doi":"10.1080/24699322.2021.1894239","DOIUrl":null,"url":null,"abstract":"<p><p>X-Atlas™ is a new imaging technology intended to advance the state of the art in patient-specific instrumentation. It uses standard AP and lateral radiographs instead of CT or MRI scans to create 3D bone models, which can be used to perform pre-operative surgical planning and fabricate TKA personalized guides. The aim of this study was to validate X-Atlas™ and evaluate the accuracy of personalized guides created with this imaging technology. Its ability to predict implant size was also determined. The accuracy of the X-Atlas™ imaging technology was evaluated by comparing the landmarks of X-Atlas™ 3D Bone models to MRI-reconstructed bone models. The accuracy of PSI guides created with X-Atlas™ (X-PSI™ guides) was evaluated during a validation study (16 specimen knees) and a clinical study (50 patients; Health Canada #CSU2015-12K). Optical navigation was used to measure positioning accuracy. In addition, the ability of X-Atlas™ to predict implant size was assessed. The accuracy of the X-Atlas™ imaging technology was below 0.87 and 1.28 mm for the femoral and tibial landmarks, respectively. The accuracy of X-PSI™ guides to reproduce the pre-operative planned HKA was within ± 3° in 100% and 86.1% of cases, for the laboratory and clinical study respectively, which was significantly better than historical data for conventional instrumentation. X-Atlas™ was able to predict implant size to ± 1 size in 95.6% and 100%, for the femur and tibia component respectively. The X-Atlas™ imaging technology demonstrated excellent accuracy for reconstructing a 3D bone model. The results show that PSI guides created with X-Atlas™ (X-PSI™ guides) provide greater implant positioning accuracy than conventional instrumentation, without the requirement of advanced imaging. Furthermore, the X-Atlas™ imaging technology could effectively predict implant sizing, potentially reducing the number of instrument trays and improving surgical efficiency.</p>","PeriodicalId":56051,"journal":{"name":"Computer Assisted Surgery","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/24699322.2021.1894239","citationCount":"11","resultStr":"{\"title\":\"Using standard X-ray images to create 3D digital bone models and patient-matched guides for aiding implant positioning and sizing in total knee arthroplasty.\",\"authors\":\"Vincent Massé, Raju S Ghate\",\"doi\":\"10.1080/24699322.2021.1894239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>X-Atlas™ is a new imaging technology intended to advance the state of the art in patient-specific instrumentation. It uses standard AP and lateral radiographs instead of CT or MRI scans to create 3D bone models, which can be used to perform pre-operative surgical planning and fabricate TKA personalized guides. The aim of this study was to validate X-Atlas™ and evaluate the accuracy of personalized guides created with this imaging technology. Its ability to predict implant size was also determined. The accuracy of the X-Atlas™ imaging technology was evaluated by comparing the landmarks of X-Atlas™ 3D Bone models to MRI-reconstructed bone models. The accuracy of PSI guides created with X-Atlas™ (X-PSI™ guides) was evaluated during a validation study (16 specimen knees) and a clinical study (50 patients; Health Canada #CSU2015-12K). Optical navigation was used to measure positioning accuracy. In addition, the ability of X-Atlas™ to predict implant size was assessed. The accuracy of the X-Atlas™ imaging technology was below 0.87 and 1.28 mm for the femoral and tibial landmarks, respectively. The accuracy of X-PSI™ guides to reproduce the pre-operative planned HKA was within ± 3° in 100% and 86.1% of cases, for the laboratory and clinical study respectively, which was significantly better than historical data for conventional instrumentation. X-Atlas™ was able to predict implant size to ± 1 size in 95.6% and 100%, for the femur and tibia component respectively. The X-Atlas™ imaging technology demonstrated excellent accuracy for reconstructing a 3D bone model. The results show that PSI guides created with X-Atlas™ (X-PSI™ guides) provide greater implant positioning accuracy than conventional instrumentation, without the requirement of advanced imaging. Furthermore, the X-Atlas™ imaging technology could effectively predict implant sizing, potentially reducing the number of instrument trays and improving surgical efficiency.</p>\",\"PeriodicalId\":56051,\"journal\":{\"name\":\"Computer Assisted Surgery\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/24699322.2021.1894239\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Assisted Surgery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/24699322.2021.1894239\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"SURGERY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Assisted Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/24699322.2021.1894239","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SURGERY","Score":null,"Total":0}
Using standard X-ray images to create 3D digital bone models and patient-matched guides for aiding implant positioning and sizing in total knee arthroplasty.
X-Atlas™ is a new imaging technology intended to advance the state of the art in patient-specific instrumentation. It uses standard AP and lateral radiographs instead of CT or MRI scans to create 3D bone models, which can be used to perform pre-operative surgical planning and fabricate TKA personalized guides. The aim of this study was to validate X-Atlas™ and evaluate the accuracy of personalized guides created with this imaging technology. Its ability to predict implant size was also determined. The accuracy of the X-Atlas™ imaging technology was evaluated by comparing the landmarks of X-Atlas™ 3D Bone models to MRI-reconstructed bone models. The accuracy of PSI guides created with X-Atlas™ (X-PSI™ guides) was evaluated during a validation study (16 specimen knees) and a clinical study (50 patients; Health Canada #CSU2015-12K). Optical navigation was used to measure positioning accuracy. In addition, the ability of X-Atlas™ to predict implant size was assessed. The accuracy of the X-Atlas™ imaging technology was below 0.87 and 1.28 mm for the femoral and tibial landmarks, respectively. The accuracy of X-PSI™ guides to reproduce the pre-operative planned HKA was within ± 3° in 100% and 86.1% of cases, for the laboratory and clinical study respectively, which was significantly better than historical data for conventional instrumentation. X-Atlas™ was able to predict implant size to ± 1 size in 95.6% and 100%, for the femur and tibia component respectively. The X-Atlas™ imaging technology demonstrated excellent accuracy for reconstructing a 3D bone model. The results show that PSI guides created with X-Atlas™ (X-PSI™ guides) provide greater implant positioning accuracy than conventional instrumentation, without the requirement of advanced imaging. Furthermore, the X-Atlas™ imaging technology could effectively predict implant sizing, potentially reducing the number of instrument trays and improving surgical efficiency.
期刊介绍:
omputer Assisted Surgery aims to improve patient care by advancing the utilization of computers during treatment; to evaluate the benefits and risks associated with the integration of advanced digital technologies into surgical practice; to disseminate clinical and basic research relevant to stereotactic surgery, minimal access surgery, endoscopy, and surgical robotics; to encourage interdisciplinary collaboration between engineers and physicians in developing new concepts and applications; to educate clinicians about the principles and techniques of computer assisted surgery and therapeutics; and to serve the international scientific community as a medium for the transfer of new information relating to theory, research, and practice in biomedical imaging and the surgical specialties.
The scope of Computer Assisted Surgery encompasses all fields within surgery, as well as biomedical imaging and instrumentation, and digital technology employed as an adjunct to imaging in diagnosis, therapeutics, and surgery. Topics featured include frameless as well as conventional stereotactic procedures, surgery guided by intraoperative ultrasound or magnetic resonance imaging, image guided focused irradiation, robotic surgery, and any therapeutic interventions performed with the use of digital imaging technology.