非编码rna在对乙酰氨基酚诱导的肝损伤中的作用。

Q2 Biochemistry, Genetics and Molecular Biology Gene expression Pub Date : 2021-06-11 Epub Date: 2021-03-23 DOI:10.3727/105221621X16165282414118
Vivek Chowdhary, Pipasha Biswas, Kalpana Ghoshal
{"title":"非编码rna在对乙酰氨基酚诱导的肝损伤中的作用。","authors":"Vivek Chowdhary,&nbsp;Pipasha Biswas,&nbsp;Kalpana Ghoshal","doi":"10.3727/105221621X16165282414118","DOIUrl":null,"url":null,"abstract":"<p><p>Genomic and transcriptomic analyses have well established that the major fraction of the mammalian genome is transcribed into different classes of RNAs ranging in size from a few nucleotides to hundreds of thousands of nucleotides, which do not encode any protein. Some of these noncoding RNAs (ncRNAs) are directly or indirectly linked to the regulation of expression or functions of 25,000 proteins coded by <2% of the human genome. Among these regulatory RNAs, microRNAs are small (2125 nucleotides) RNAs that are processed from precursor RNAs that have stemloop structure, whereas noncoding RNAs >200 nucleotides are termed long noncoding RNAs (lncRNAs). Circular RNAs (circRNAs) are newly identified lncRNA members that are generated by back-splicing of primary transcripts. The functions of ncRNAs in modulating liver toxicity of xenobiotics are emerging only recently. Acetaminophen (<i>N</i>-acetyl-<i>para</i>-aminophenol, paracetamol or APAP) is a safe analgesic and antipyretic drug at the therapeutic dose. However, it can cause severe liver toxicity that may lead to liver failure if overdosed or combined with alcohol, herbs, or other xenobiotics. This review discusses the role of ncRNAs in acetaminophen metabolism, toxicity, and liver regeneration after APAP-induced liver injury (AILI).</p>","PeriodicalId":12502,"journal":{"name":"Gene expression","volume":" ","pages":"179-188"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8201654/pdf/GE-20-179.pdf","citationCount":"0","resultStr":"{\"title\":\"Role of Noncoding RNAs in Acetaminophen-Induced Liver Injury.\",\"authors\":\"Vivek Chowdhary,&nbsp;Pipasha Biswas,&nbsp;Kalpana Ghoshal\",\"doi\":\"10.3727/105221621X16165282414118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Genomic and transcriptomic analyses have well established that the major fraction of the mammalian genome is transcribed into different classes of RNAs ranging in size from a few nucleotides to hundreds of thousands of nucleotides, which do not encode any protein. Some of these noncoding RNAs (ncRNAs) are directly or indirectly linked to the regulation of expression or functions of 25,000 proteins coded by <2% of the human genome. Among these regulatory RNAs, microRNAs are small (2125 nucleotides) RNAs that are processed from precursor RNAs that have stemloop structure, whereas noncoding RNAs >200 nucleotides are termed long noncoding RNAs (lncRNAs). Circular RNAs (circRNAs) are newly identified lncRNA members that are generated by back-splicing of primary transcripts. The functions of ncRNAs in modulating liver toxicity of xenobiotics are emerging only recently. Acetaminophen (<i>N</i>-acetyl-<i>para</i>-aminophenol, paracetamol or APAP) is a safe analgesic and antipyretic drug at the therapeutic dose. However, it can cause severe liver toxicity that may lead to liver failure if overdosed or combined with alcohol, herbs, or other xenobiotics. This review discusses the role of ncRNAs in acetaminophen metabolism, toxicity, and liver regeneration after APAP-induced liver injury (AILI).</p>\",\"PeriodicalId\":12502,\"journal\":{\"name\":\"Gene expression\",\"volume\":\" \",\"pages\":\"179-188\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8201654/pdf/GE-20-179.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gene expression\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3727/105221621X16165282414118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/3/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene expression","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3727/105221621X16165282414118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/3/23 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

基因组学和转录组学分析已经确定,哺乳动物基因组的主要部分被转录成不同种类的rna,其大小从几个核苷酸到数十万个核苷酸不等,这些rna不编码任何蛋白质。这些非编码rna (ncRNAs)中的一些直接或间接地与200个核苷酸编码的25,000种蛋白质的表达或功能调控有关,这些蛋白质被称为长链非编码rna (lncRNAs)。环状rna (circRNAs)是新发现的lncRNA成员,由初级转录物的反剪接产生。ncrna在调节外源性药物肝毒性中的作用是最近才出现的。对乙酰氨基酚(n -乙酰基-对氨基酚,对乙酰氨基酚或APAP)是一种安全的治疗剂量的镇痛和解热药物。然而,如果过量服用或与酒精、草药或其他异种药物联合使用,它会引起严重的肝毒性,可能导致肝功能衰竭。本文综述了ncrna在apap诱导的肝损伤(AILI)后对乙酰氨基酚代谢、毒性和肝脏再生中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Role of Noncoding RNAs in Acetaminophen-Induced Liver Injury.

Genomic and transcriptomic analyses have well established that the major fraction of the mammalian genome is transcribed into different classes of RNAs ranging in size from a few nucleotides to hundreds of thousands of nucleotides, which do not encode any protein. Some of these noncoding RNAs (ncRNAs) are directly or indirectly linked to the regulation of expression or functions of 25,000 proteins coded by <2% of the human genome. Among these regulatory RNAs, microRNAs are small (2125 nucleotides) RNAs that are processed from precursor RNAs that have stemloop structure, whereas noncoding RNAs >200 nucleotides are termed long noncoding RNAs (lncRNAs). Circular RNAs (circRNAs) are newly identified lncRNA members that are generated by back-splicing of primary transcripts. The functions of ncRNAs in modulating liver toxicity of xenobiotics are emerging only recently. Acetaminophen (N-acetyl-para-aminophenol, paracetamol or APAP) is a safe analgesic and antipyretic drug at the therapeutic dose. However, it can cause severe liver toxicity that may lead to liver failure if overdosed or combined with alcohol, herbs, or other xenobiotics. This review discusses the role of ncRNAs in acetaminophen metabolism, toxicity, and liver regeneration after APAP-induced liver injury (AILI).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Gene expression
Gene expression 生物-生物工程与应用微生物
CiteScore
3.80
自引率
0.00%
发文量
3
审稿时长
>12 weeks
期刊介绍: Gene Expression, The Journal of Liver Research will publish articles in all aspects of hepatology. Hepatology, as a research discipline, has seen unprecedented growth especially in the cellular and molecular mechanisms of hepatic health and disease, which continues to have a major impact on understanding liver development, stem cells, carcinogenesis, tissue engineering, injury, repair, regeneration, immunology, metabolism, fibrosis, and transplantation. Continued research and improved understanding in these areas will have a meaningful impact on liver disease prevention, diagnosis, and treatment. The existing journal Gene Expression has expanded its focus to become Gene Expression, The Journal of Liver Research to meet this growing demand. In its revised and expanded scope, the journal will publish high-impact original articles, reviews, short but complete articles, and special articles (editorials, commentaries, opinions) on all aspects of hepatology, making it a unique and invaluable resource for readers interested in this field. The expanded team, led by an Editor-in-Chief who is uniquely qualified and a renowned expert, along with a dynamic and functional editorial board, is determined to make this a premier journal in the field of hepatology.
期刊最新文献
Gene Expression Analysis Reveals Clinically Significant Genes Associated with Familial Hypercholesterolemia and Atherosclerosis Acute Myeloid Leukemia with Myelodysplasia-related Cytogenetic/Genetic-defined Abnormalities Masquerades as Acute Undifferentiated Leukemia Potential Epigenetic Modifiers Targeting the Alteration of Methylation in Colorectal Cancer (Epi)genetic Aspects of Metabolic Syndrome Pathogenesis in Relation to Brain-derived Neurotrophic Factor Expression: A Review Non-coding RNA and Atherosclerosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1