针对大学毕业返乡学生的 Covid-19 传播模型。

IF 1.2 Q4 HEALTH POLICY & SERVICES Health Systems Pub Date : 2021-01-17 eCollection Date: 2021-01-01 DOI:10.1080/20476965.2020.1857214
Paul R Harper, Joshua W Moore, Thomas E Woolley
{"title":"针对大学毕业返乡学生的 Covid-19 传播模型。","authors":"Paul R Harper, Joshua W Moore, Thomas E Woolley","doi":"10.1080/20476965.2020.1857214","DOIUrl":null,"url":null,"abstract":"<p><p>We provide an open-source model to estimate the number of secondary Covid-19 infections caused by potentially infectious students returning from university to private homes with other occupants. Using a Monte-Carlo method and data derived from UK sources, we predict that an infectious student would, on average, infect 0.94 other household members. Or, as a rule of thumb, each infected student would generate (just less than) one secondary within-household infection. The total number of secondary cases for all returning students is dependent on the virus prevalence within each student population at the time of their departure from campus back home. Although the proposed estimation method is general and robust, the results are sensitive to the input data. We provide Matlab code and a helpful online app (http://bit.ly/Secondary_infections_app) that can be used to estimate numbers of secondary infections based on local parameter values. This can be used worldwide to support policy making.</p>","PeriodicalId":44699,"journal":{"name":"Health Systems","volume":"10 1","pages":"31-40"},"PeriodicalIF":1.2000,"publicationDate":"2021-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7946042/pdf/THSS_10_1857214.pdf","citationCount":"0","resultStr":"{\"title\":\"Covid-19 transmission modelling of students returning home from university.\",\"authors\":\"Paul R Harper, Joshua W Moore, Thomas E Woolley\",\"doi\":\"10.1080/20476965.2020.1857214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We provide an open-source model to estimate the number of secondary Covid-19 infections caused by potentially infectious students returning from university to private homes with other occupants. Using a Monte-Carlo method and data derived from UK sources, we predict that an infectious student would, on average, infect 0.94 other household members. Or, as a rule of thumb, each infected student would generate (just less than) one secondary within-household infection. The total number of secondary cases for all returning students is dependent on the virus prevalence within each student population at the time of their departure from campus back home. Although the proposed estimation method is general and robust, the results are sensitive to the input data. We provide Matlab code and a helpful online app (http://bit.ly/Secondary_infections_app) that can be used to estimate numbers of secondary infections based on local parameter values. This can be used worldwide to support policy making.</p>\",\"PeriodicalId\":44699,\"journal\":{\"name\":\"Health Systems\",\"volume\":\"10 1\",\"pages\":\"31-40\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7946042/pdf/THSS_10_1857214.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/20476965.2020.1857214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"HEALTH POLICY & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/20476965.2020.1857214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"HEALTH POLICY & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

我们提供了一个开源模型,用于估算可能具有传染性的学生从大学回到有其他住户的私人住宅后造成的 Covid-19 二次感染数量。利用蒙特卡洛方法和英国的数据来源,我们预测一名受感染的学生平均会感染 0.94 名其他家庭成员。或者说,根据经验,每个受感染的学生都会产生(略少于)一个家庭内二次感染病例。所有返校学生的二次感染病例总数取决于他们离开校园回家时每个学生群体中的病毒流行率。尽管所提出的估算方法具有通用性和稳健性,但其结果对输入数据非常敏感。我们提供了 Matlab 代码和一个有用的在线应用程序 (http://bit.ly/Secondary_infections_app),可用于根据本地参数值估算二次感染人数。该方法可在全球范围内用于支持政策制定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Covid-19 transmission modelling of students returning home from university.

We provide an open-source model to estimate the number of secondary Covid-19 infections caused by potentially infectious students returning from university to private homes with other occupants. Using a Monte-Carlo method and data derived from UK sources, we predict that an infectious student would, on average, infect 0.94 other household members. Or, as a rule of thumb, each infected student would generate (just less than) one secondary within-household infection. The total number of secondary cases for all returning students is dependent on the virus prevalence within each student population at the time of their departure from campus back home. Although the proposed estimation method is general and robust, the results are sensitive to the input data. We provide Matlab code and a helpful online app (http://bit.ly/Secondary_infections_app) that can be used to estimate numbers of secondary infections based on local parameter values. This can be used worldwide to support policy making.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Health Systems
Health Systems HEALTH POLICY & SERVICES-
CiteScore
4.20
自引率
11.10%
发文量
20
期刊最新文献
Towards new frontiers of healthcare systems research using artificial intelligence and generative AI. Assistance systems for patient positioning in radiotherapy practice. Resilience of hospitals in an age of disruptions: a systematic literature review on resources and capabilities. From digital health to learning health systems: four approaches to using data for digital health design. Using participatory systems approaches to improve healthcare delivery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1