{"title":"从嘈杂的行为数据中恢复可靠的个体生物学参数:以概率选择任务中的基底神经节指数为例。","authors":"Yinan Xu, Andrea Stocco","doi":"10.1007/s42113-021-00102-5","DOIUrl":null,"url":null,"abstract":"<p><p>Behavioral data, despite being a common index of cognitive activity, is under scrutiny for having poor reliability as a result of noise or lacking replications of reliable effects. Here, we argue that cognitive modeling can be used to enhance the test-retest reliability of the behavioral measures by recovering individual-level parameters from behavioral data. We tested this empirically with the Probabilistic Stimulus Selection (PSS) task, which is used to measure a participant's sensitivity to positive or negative reinforcement. An analysis of 400,000 simulations from an Adaptive Control of Thought-Rational (ACT-R) model of this task showed that the poor reliability of the task is due to the instability of the end-estimates: because of the way the task works, the same participants might sometimes end up having apparently opposite scores. To recover the underlying interpretable parameters and enhance reliability, we used a Bayesian Maximum A Posteriori (MAP) procedure. We were able to obtain reliable parameters across sessions (intraclass correlation coefficient ≈ 0.5). A follow-up study on a modified version of the task also found the same pattern of results, with very poor test-retest reliability in behavior but moderate reliability in recovered parameters (intraclass correlation coefficient ≈ 0.4). Collectively, these results imply that this approach can further be used to provide superior measures in terms of reliability, and bring greater insights into individual differences.</p>","PeriodicalId":72660,"journal":{"name":"Computational brain & behavior","volume":"4 3","pages":"318-334"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s42113-021-00102-5","citationCount":"2","resultStr":"{\"title\":\"Recovering Reliable Idiographic Biological Parameters from Noisy Behavioral Data: the Case of Basal Ganglia Indices in the Probabilistic Selection Task.\",\"authors\":\"Yinan Xu, Andrea Stocco\",\"doi\":\"10.1007/s42113-021-00102-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Behavioral data, despite being a common index of cognitive activity, is under scrutiny for having poor reliability as a result of noise or lacking replications of reliable effects. Here, we argue that cognitive modeling can be used to enhance the test-retest reliability of the behavioral measures by recovering individual-level parameters from behavioral data. We tested this empirically with the Probabilistic Stimulus Selection (PSS) task, which is used to measure a participant's sensitivity to positive or negative reinforcement. An analysis of 400,000 simulations from an Adaptive Control of Thought-Rational (ACT-R) model of this task showed that the poor reliability of the task is due to the instability of the end-estimates: because of the way the task works, the same participants might sometimes end up having apparently opposite scores. To recover the underlying interpretable parameters and enhance reliability, we used a Bayesian Maximum A Posteriori (MAP) procedure. We were able to obtain reliable parameters across sessions (intraclass correlation coefficient ≈ 0.5). A follow-up study on a modified version of the task also found the same pattern of results, with very poor test-retest reliability in behavior but moderate reliability in recovered parameters (intraclass correlation coefficient ≈ 0.4). Collectively, these results imply that this approach can further be used to provide superior measures in terms of reliability, and bring greater insights into individual differences.</p>\",\"PeriodicalId\":72660,\"journal\":{\"name\":\"Computational brain & behavior\",\"volume\":\"4 3\",\"pages\":\"318-334\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s42113-021-00102-5\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational brain & behavior\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s42113-021-00102-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/3/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational brain & behavior","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s42113-021-00102-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/3/24 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Recovering Reliable Idiographic Biological Parameters from Noisy Behavioral Data: the Case of Basal Ganglia Indices in the Probabilistic Selection Task.
Behavioral data, despite being a common index of cognitive activity, is under scrutiny for having poor reliability as a result of noise or lacking replications of reliable effects. Here, we argue that cognitive modeling can be used to enhance the test-retest reliability of the behavioral measures by recovering individual-level parameters from behavioral data. We tested this empirically with the Probabilistic Stimulus Selection (PSS) task, which is used to measure a participant's sensitivity to positive or negative reinforcement. An analysis of 400,000 simulations from an Adaptive Control of Thought-Rational (ACT-R) model of this task showed that the poor reliability of the task is due to the instability of the end-estimates: because of the way the task works, the same participants might sometimes end up having apparently opposite scores. To recover the underlying interpretable parameters and enhance reliability, we used a Bayesian Maximum A Posteriori (MAP) procedure. We were able to obtain reliable parameters across sessions (intraclass correlation coefficient ≈ 0.5). A follow-up study on a modified version of the task also found the same pattern of results, with very poor test-retest reliability in behavior but moderate reliability in recovered parameters (intraclass correlation coefficient ≈ 0.4). Collectively, these results imply that this approach can further be used to provide superior measures in terms of reliability, and bring greater insights into individual differences.