{"title":"脉冲电磁场对实验性大鼠坐骨神经损伤的影响。","authors":"Gülten Bademoğlu, Nurten Erdal, Coşar Uzun, Bahar Taşdelen","doi":"10.1080/15368378.2021.1907403","DOIUrl":null,"url":null,"abstract":"<p><p>Some experimental research indicates that low-frequency pulsed electromagnetic field (PEMF) stimulation may accelerate regeneration in sciatic nerve injury. However, little research has examined the electrophysiological and functional properties of regenerating peripheral nerves under PEMF. The main aim of the present study is to investigate the effects of PEMF on sciatic nerve regeneration in short- and long-term processes with electrophysiologically and functionally after crushing damage. Crush lesions were performed using jewelery forceps for 30 s. After crush injury of the sciatic nerves, 24 female Wistar-Albino rats were divided into 3 groups with 8 rats in each group: SH(Sham), SNI (Sciatic Nerve Injury), SNI+PEMF(Sciatic Nerve Injury+Pulsed Electromagnetic Field). SNI+PEMF group was exposed to PEMF (4 h/day, intensity; 0.3mT, low-frequency; 2 Hz) for 40-days. Electrophysiological records (at the beginning and 1st, 2nd, 4th and 6th weeks post-crush) and functional footprints (at 1st, 2nd, 3rd, 4th, 5th and 6th weeks post crush) were measured from all groups during the experiment. The results were compared to SNI and SNI+PEMF groups, it was found that amplitude and area parameters in the first-week were significantly higher and latency was lower in the SNI+PEMF group than in the SNI group (<i>p</i> < 0,05). However, the effect of PEMF was not significant in the 2nd, 4th, 6th weeks. In addition, in the 1st and 2nd weeks, the SSI parameters were significantly higher in SNI+PMF group than SNI group (<i>p</i> < .05). These results indicate that low-frequency PEMF is not effective for long-periods of application time while PEMF may be useful during the short-term recovery period.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15368378.2021.1907403","citationCount":"2","resultStr":"{\"title\":\"The effects of pulsed electromagnetic field on experimentally induced sciatic nerve injury in rats.\",\"authors\":\"Gülten Bademoğlu, Nurten Erdal, Coşar Uzun, Bahar Taşdelen\",\"doi\":\"10.1080/15368378.2021.1907403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Some experimental research indicates that low-frequency pulsed electromagnetic field (PEMF) stimulation may accelerate regeneration in sciatic nerve injury. However, little research has examined the electrophysiological and functional properties of regenerating peripheral nerves under PEMF. The main aim of the present study is to investigate the effects of PEMF on sciatic nerve regeneration in short- and long-term processes with electrophysiologically and functionally after crushing damage. Crush lesions were performed using jewelery forceps for 30 s. After crush injury of the sciatic nerves, 24 female Wistar-Albino rats were divided into 3 groups with 8 rats in each group: SH(Sham), SNI (Sciatic Nerve Injury), SNI+PEMF(Sciatic Nerve Injury+Pulsed Electromagnetic Field). SNI+PEMF group was exposed to PEMF (4 h/day, intensity; 0.3mT, low-frequency; 2 Hz) for 40-days. Electrophysiological records (at the beginning and 1st, 2nd, 4th and 6th weeks post-crush) and functional footprints (at 1st, 2nd, 3rd, 4th, 5th and 6th weeks post crush) were measured from all groups during the experiment. The results were compared to SNI and SNI+PEMF groups, it was found that amplitude and area parameters in the first-week were significantly higher and latency was lower in the SNI+PEMF group than in the SNI group (<i>p</i> < 0,05). However, the effect of PEMF was not significant in the 2nd, 4th, 6th weeks. In addition, in the 1st and 2nd weeks, the SSI parameters were significantly higher in SNI+PMF group than SNI group (<i>p</i> < .05). These results indicate that low-frequency PEMF is not effective for long-periods of application time while PEMF may be useful during the short-term recovery period.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15368378.2021.1907403\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/15368378.2021.1907403\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/4/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15368378.2021.1907403","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/4/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The effects of pulsed electromagnetic field on experimentally induced sciatic nerve injury in rats.
Some experimental research indicates that low-frequency pulsed electromagnetic field (PEMF) stimulation may accelerate regeneration in sciatic nerve injury. However, little research has examined the electrophysiological and functional properties of regenerating peripheral nerves under PEMF. The main aim of the present study is to investigate the effects of PEMF on sciatic nerve regeneration in short- and long-term processes with electrophysiologically and functionally after crushing damage. Crush lesions were performed using jewelery forceps for 30 s. After crush injury of the sciatic nerves, 24 female Wistar-Albino rats were divided into 3 groups with 8 rats in each group: SH(Sham), SNI (Sciatic Nerve Injury), SNI+PEMF(Sciatic Nerve Injury+Pulsed Electromagnetic Field). SNI+PEMF group was exposed to PEMF (4 h/day, intensity; 0.3mT, low-frequency; 2 Hz) for 40-days. Electrophysiological records (at the beginning and 1st, 2nd, 4th and 6th weeks post-crush) and functional footprints (at 1st, 2nd, 3rd, 4th, 5th and 6th weeks post crush) were measured from all groups during the experiment. The results were compared to SNI and SNI+PEMF groups, it was found that amplitude and area parameters in the first-week were significantly higher and latency was lower in the SNI+PEMF group than in the SNI group (p < 0,05). However, the effect of PEMF was not significant in the 2nd, 4th, 6th weeks. In addition, in the 1st and 2nd weeks, the SSI parameters were significantly higher in SNI+PMF group than SNI group (p < .05). These results indicate that low-frequency PEMF is not effective for long-periods of application time while PEMF may be useful during the short-term recovery period.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.