常驻人心脏干细胞:在心脏细胞稳态中的作用和心肌再生的潜力。

Daniele Torella, Georgina M Ellison, Simón Méndez-Ferrer, Borja Ibanez, Bernardo Nadal-Ginard
{"title":"常驻人心脏干细胞:在心脏细胞稳态中的作用和心肌再生的潜力。","authors":"Daniele Torella,&nbsp;Georgina M Ellison,&nbsp;Simón Méndez-Ferrer,&nbsp;Borja Ibanez,&nbsp;Bernardo Nadal-Ginard","doi":"10.1038/ncpcardio0409","DOIUrl":null,"url":null,"abstract":"<p><p>Current treatments for myocardial infarction have significantly reduced the acute mortality of ischemic cardiomyopathy. This reduction has resulted in the survival of a large cohort of patients left with a significant 'myocyte deficit'. Once this deficit leads to heart failure there is no available therapy to improve long-term cardiac function. Recent developments in stem cell biology have focused on the possibility of regenerating contractile myocardial tissue. Most of these approaches have entailed the transplantation of exogenous cardiac-regenerating cells. Recently, we and others have reported that the adult mammalian myocardium, including that in humans, contains a small pool of cardiac stem and progenitor cells (CSCs) that can replenish the cardiomyocyte population and, in some cases, the coronary microcirculation. The human CSCs (hCSCs) are involved in maintaining myocardial cell homeostasis throughout life and participate in remodeling in cardiac pathology. They can be isolated, propagated and cloned. The progeny of a single cell clone differentiates in vitro and in vivo into myocytes, smooth muscle and endothelial cells. Surprisingly, in response to different forms of stress, hCSCs acquire a senescent, dysfunctional phenotype. Strikingly, these nonfunctional CSCs constitute around 50% of the total CSC pool in older individuals-those most likely to be candidates for hCSC-based myocardial regeneration. Therefore, the challenge to develop clinically effective therapies of myocardial regeneration is twofold: to produce the activation of the hCSCs in situ in order to obviate the need for cell transplantation, and to elucidate the mechanisms responsible for hCSC senescence in order to prevent or reverse its development.</p>","PeriodicalId":51263,"journal":{"name":"Nature Clinical Practice. Cardiovascular Medicine","volume":"3 Suppl 1 ","pages":"S8-13"},"PeriodicalIF":0.0000,"publicationDate":"2006-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1038/ncpcardio0409","citationCount":"170","resultStr":"{\"title\":\"Resident human cardiac stem cells: role in cardiac cellular homeostasis and potential for myocardial regeneration.\",\"authors\":\"Daniele Torella,&nbsp;Georgina M Ellison,&nbsp;Simón Méndez-Ferrer,&nbsp;Borja Ibanez,&nbsp;Bernardo Nadal-Ginard\",\"doi\":\"10.1038/ncpcardio0409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Current treatments for myocardial infarction have significantly reduced the acute mortality of ischemic cardiomyopathy. This reduction has resulted in the survival of a large cohort of patients left with a significant 'myocyte deficit'. Once this deficit leads to heart failure there is no available therapy to improve long-term cardiac function. Recent developments in stem cell biology have focused on the possibility of regenerating contractile myocardial tissue. Most of these approaches have entailed the transplantation of exogenous cardiac-regenerating cells. Recently, we and others have reported that the adult mammalian myocardium, including that in humans, contains a small pool of cardiac stem and progenitor cells (CSCs) that can replenish the cardiomyocyte population and, in some cases, the coronary microcirculation. The human CSCs (hCSCs) are involved in maintaining myocardial cell homeostasis throughout life and participate in remodeling in cardiac pathology. They can be isolated, propagated and cloned. The progeny of a single cell clone differentiates in vitro and in vivo into myocytes, smooth muscle and endothelial cells. Surprisingly, in response to different forms of stress, hCSCs acquire a senescent, dysfunctional phenotype. Strikingly, these nonfunctional CSCs constitute around 50% of the total CSC pool in older individuals-those most likely to be candidates for hCSC-based myocardial regeneration. Therefore, the challenge to develop clinically effective therapies of myocardial regeneration is twofold: to produce the activation of the hCSCs in situ in order to obviate the need for cell transplantation, and to elucidate the mechanisms responsible for hCSC senescence in order to prevent or reverse its development.</p>\",\"PeriodicalId\":51263,\"journal\":{\"name\":\"Nature Clinical Practice. Cardiovascular Medicine\",\"volume\":\"3 Suppl 1 \",\"pages\":\"S8-13\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1038/ncpcardio0409\",\"citationCount\":\"170\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Clinical Practice. Cardiovascular Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/ncpcardio0409\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Clinical Practice. Cardiovascular Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/ncpcardio0409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 170

摘要

目前对心肌梗死的治疗已经显著降低了缺血性心肌病的急性死亡率。这种减少导致了大量患者的生存,留下了显著的“肌细胞缺陷”。一旦这种缺陷导致心力衰竭,就没有有效的治疗方法来改善长期的心功能。干细胞生物学的最新进展集中在再生可收缩心肌组织的可能性上。这些方法大多需要移植外源性心脏再生细胞。最近,我们和其他人报道了成年哺乳动物的心肌,包括人类的心肌,含有一小部分心脏干细胞和祖细胞(CSCs),它们可以补充心肌细胞群,在某些情况下,还可以补充冠状动脉微循环。人CSCs (hCSCs)在整个生命过程中参与维持心肌细胞稳态,并参与心脏病理重构。它们可以被分离、繁殖和克隆。单细胞克隆的后代在体外和体内分化为肌细胞、平滑肌细胞和内皮细胞。令人惊讶的是,在不同形式的应激反应中,hCSCs获得衰老,功能失调的表型。引人注目的是,这些无功能的CSC约占老年人CSC总数的50%,这些人最有可能成为hcsc为基础的心肌再生的候选者。因此,开发临床有效的心肌再生疗法的挑战是双重的:原位产生hCSC的激活,以避免细胞移植的需要;阐明hCSC衰老的机制,以防止或逆转其发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Resident human cardiac stem cells: role in cardiac cellular homeostasis and potential for myocardial regeneration.

Current treatments for myocardial infarction have significantly reduced the acute mortality of ischemic cardiomyopathy. This reduction has resulted in the survival of a large cohort of patients left with a significant 'myocyte deficit'. Once this deficit leads to heart failure there is no available therapy to improve long-term cardiac function. Recent developments in stem cell biology have focused on the possibility of regenerating contractile myocardial tissue. Most of these approaches have entailed the transplantation of exogenous cardiac-regenerating cells. Recently, we and others have reported that the adult mammalian myocardium, including that in humans, contains a small pool of cardiac stem and progenitor cells (CSCs) that can replenish the cardiomyocyte population and, in some cases, the coronary microcirculation. The human CSCs (hCSCs) are involved in maintaining myocardial cell homeostasis throughout life and participate in remodeling in cardiac pathology. They can be isolated, propagated and cloned. The progeny of a single cell clone differentiates in vitro and in vivo into myocytes, smooth muscle and endothelial cells. Surprisingly, in response to different forms of stress, hCSCs acquire a senescent, dysfunctional phenotype. Strikingly, these nonfunctional CSCs constitute around 50% of the total CSC pool in older individuals-those most likely to be candidates for hCSC-based myocardial regeneration. Therefore, the challenge to develop clinically effective therapies of myocardial regeneration is twofold: to produce the activation of the hCSCs in situ in order to obviate the need for cell transplantation, and to elucidate the mechanisms responsible for hCSC senescence in order to prevent or reverse its development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sequence and Phylogenetic Analysis of the Untranslated Promoter Regions for HLA Class I Genes. Prevalence of allergen sensitization in 1000 adults in Saskatchewan. Tinea pedis and onychomycosis frequency in diabetes mellitus patients and diabetic foot ulcers. A cross sectional - observational study. Imaging left ventricular remodeling: targeting the neurohumoral axis. Targeted imaging of myocardial damage.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1