Simón Méndez-Ferrer, Georgina M Ellison, Daniele Torella, Bernardo Nadal-Ginard
{"title":"常驻祖细胞和骨髓干细胞在心肌更新和修复中的作用。","authors":"Simón Méndez-Ferrer, Georgina M Ellison, Daniele Torella, Bernardo Nadal-Ginard","doi":"10.1038/ncpcardio0415","DOIUrl":null,"url":null,"abstract":"<p><p>Although cardiac transplantation is still the treatment of choice for end-stage heart disease, the side effects derived from the use of immunosuppressants and the limited availability of donors have prompted the search for alternative therapeutic strategies. Among other possibilities, cell transplantation approaches have recently emerged as new alternatives to stimulate myocardial regeneration. These approaches are mainly based on the increasing number of reports documenting the plasticity of stem cells of various origins, particularly the ability of several types of embryonic and adult stem cells to give rise to cardiomyocytes. Unprecedented in the field of 'translational research' and based on the urgent need for alternative therapies, the promising results obtained with animal models have been quickly transferred to the clinical arena, where numerous small pilot studies using different cell types are already ongoing and/or have reported promising results. Nevertheless, the lack of randomization, the variability and small size of the treated cohorts and the use of mixed populations of cells have often clouded the significance and prevented a mechanistic interpretation of the results. Here, we briefly review the use of bone-marrow-derived and cardiac-derived stem/progenitor cells in myocardial regeneration studies and discuss their significance for the future of the field of myocardial regeneration.</p>","PeriodicalId":51263,"journal":{"name":"Nature Clinical Practice. Cardiovascular Medicine","volume":"3 Suppl 1 ","pages":"S83-9"},"PeriodicalIF":0.0000,"publicationDate":"2006-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1038/ncpcardio0415","citationCount":"24","resultStr":"{\"title\":\"Resident progenitors and bone marrow stem cells in myocardial renewal and repair.\",\"authors\":\"Simón Méndez-Ferrer, Georgina M Ellison, Daniele Torella, Bernardo Nadal-Ginard\",\"doi\":\"10.1038/ncpcardio0415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although cardiac transplantation is still the treatment of choice for end-stage heart disease, the side effects derived from the use of immunosuppressants and the limited availability of donors have prompted the search for alternative therapeutic strategies. Among other possibilities, cell transplantation approaches have recently emerged as new alternatives to stimulate myocardial regeneration. These approaches are mainly based on the increasing number of reports documenting the plasticity of stem cells of various origins, particularly the ability of several types of embryonic and adult stem cells to give rise to cardiomyocytes. Unprecedented in the field of 'translational research' and based on the urgent need for alternative therapies, the promising results obtained with animal models have been quickly transferred to the clinical arena, where numerous small pilot studies using different cell types are already ongoing and/or have reported promising results. Nevertheless, the lack of randomization, the variability and small size of the treated cohorts and the use of mixed populations of cells have often clouded the significance and prevented a mechanistic interpretation of the results. Here, we briefly review the use of bone-marrow-derived and cardiac-derived stem/progenitor cells in myocardial regeneration studies and discuss their significance for the future of the field of myocardial regeneration.</p>\",\"PeriodicalId\":51263,\"journal\":{\"name\":\"Nature Clinical Practice. Cardiovascular Medicine\",\"volume\":\"3 Suppl 1 \",\"pages\":\"S83-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1038/ncpcardio0415\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Clinical Practice. Cardiovascular Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/ncpcardio0415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Clinical Practice. Cardiovascular Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/ncpcardio0415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Resident progenitors and bone marrow stem cells in myocardial renewal and repair.
Although cardiac transplantation is still the treatment of choice for end-stage heart disease, the side effects derived from the use of immunosuppressants and the limited availability of donors have prompted the search for alternative therapeutic strategies. Among other possibilities, cell transplantation approaches have recently emerged as new alternatives to stimulate myocardial regeneration. These approaches are mainly based on the increasing number of reports documenting the plasticity of stem cells of various origins, particularly the ability of several types of embryonic and adult stem cells to give rise to cardiomyocytes. Unprecedented in the field of 'translational research' and based on the urgent need for alternative therapies, the promising results obtained with animal models have been quickly transferred to the clinical arena, where numerous small pilot studies using different cell types are already ongoing and/or have reported promising results. Nevertheless, the lack of randomization, the variability and small size of the treated cohorts and the use of mixed populations of cells have often clouded the significance and prevented a mechanistic interpretation of the results. Here, we briefly review the use of bone-marrow-derived and cardiac-derived stem/progenitor cells in myocardial regeneration studies and discuss their significance for the future of the field of myocardial regeneration.