蛋白质晶体的成核

IF 4.5 2区 材料科学 Q1 CRYSTALLOGRAPHY Progress in Crystal Growth and Characterization of Materials Pub Date : 2016-06-01 DOI:10.1016/j.pcrysgrow.2016.04.007
Peter G. Vekilov
{"title":"蛋白质晶体的成核","authors":"Peter G. Vekilov","doi":"10.1016/j.pcrysgrow.2016.04.007","DOIUrl":null,"url":null,"abstract":"<div><p><span>Protein crystal nucleation is a central problem in biological crystallography and other areas of science, technology, and medicine. Recent studies have demonstrated that protein crystal nuclei form within crucial precursors. Data for several proteins provided by these methods have demonstrated that the nucleation precursors are clusters consisting of protein dense liquid, which are metastable with respect to the host protein solution. The clusters are several hundred nanometers in size, they occupy from 10</span><sup>−7</sup> to 10<sup>−3</sup><span> of the solution volume, and their properties in solutions supersaturated with respect to crystals are similar to those in homogeneous, i.e., undersaturated, solutions. The clusters exist due to the conformation flexibility of the protein molecules, leading to the exposure of hydrophobic surfaces and enhanced intermolecular binding. These results indicate that protein conformational flexibility might be the mechanism behind the metastable mesoscopic clusters and crystal nucleation. The investigations of the cluster properties are still in their infancy. Results on direct imaging of cluster behaviors and characterization of cluster mechanisms with a variety of proteins will soon lead to major breakthroughs in protein biophysics.</span></p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"62 2","pages":"Pages 136-154"},"PeriodicalIF":4.5000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2016.04.007","citationCount":"31","resultStr":"{\"title\":\"Nucleation of protein crystals\",\"authors\":\"Peter G. Vekilov\",\"doi\":\"10.1016/j.pcrysgrow.2016.04.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Protein crystal nucleation is a central problem in biological crystallography and other areas of science, technology, and medicine. Recent studies have demonstrated that protein crystal nuclei form within crucial precursors. Data for several proteins provided by these methods have demonstrated that the nucleation precursors are clusters consisting of protein dense liquid, which are metastable with respect to the host protein solution. The clusters are several hundred nanometers in size, they occupy from 10</span><sup>−7</sup> to 10<sup>−3</sup><span> of the solution volume, and their properties in solutions supersaturated with respect to crystals are similar to those in homogeneous, i.e., undersaturated, solutions. The clusters exist due to the conformation flexibility of the protein molecules, leading to the exposure of hydrophobic surfaces and enhanced intermolecular binding. These results indicate that protein conformational flexibility might be the mechanism behind the metastable mesoscopic clusters and crystal nucleation. The investigations of the cluster properties are still in their infancy. Results on direct imaging of cluster behaviors and characterization of cluster mechanisms with a variety of proteins will soon lead to major breakthroughs in protein biophysics.</span></p></div>\",\"PeriodicalId\":409,\"journal\":{\"name\":\"Progress in Crystal Growth and Characterization of Materials\",\"volume\":\"62 2\",\"pages\":\"Pages 136-154\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2016-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2016.04.007\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Crystal Growth and Characterization of Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960897416300109\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CRYSTALLOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Crystal Growth and Characterization of Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960897416300109","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 31

摘要

蛋白质晶体成核是生物晶体学和其他科学、技术和医学领域的核心问题。最近的研究表明,蛋白质晶体核在关键的前体中形成。这些方法提供的几种蛋白质的数据表明,成核前体是由蛋白质致密液体组成的簇,相对于宿主蛋白质溶液是亚稳态的。这些团簇的尺寸为几百纳米,它们占据了溶液体积的10−7到10−3,它们在过饱和溶液中的晶体性质与在不饱和溶液中的晶体性质相似。簇的存在是由于蛋白质分子的构象灵活性,导致疏水表面的暴露和增强分子间的结合。这些结果表明,蛋白质的构象柔韧性可能是亚稳介观团簇和晶体成核的机制。对星团性质的研究仍处于初级阶段。多种蛋白质的团簇行为的直接成像和团簇机制表征的结果将很快导致蛋白质生物物理学的重大突破。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nucleation of protein crystals

Protein crystal nucleation is a central problem in biological crystallography and other areas of science, technology, and medicine. Recent studies have demonstrated that protein crystal nuclei form within crucial precursors. Data for several proteins provided by these methods have demonstrated that the nucleation precursors are clusters consisting of protein dense liquid, which are metastable with respect to the host protein solution. The clusters are several hundred nanometers in size, they occupy from 10−7 to 10−3 of the solution volume, and their properties in solutions supersaturated with respect to crystals are similar to those in homogeneous, i.e., undersaturated, solutions. The clusters exist due to the conformation flexibility of the protein molecules, leading to the exposure of hydrophobic surfaces and enhanced intermolecular binding. These results indicate that protein conformational flexibility might be the mechanism behind the metastable mesoscopic clusters and crystal nucleation. The investigations of the cluster properties are still in their infancy. Results on direct imaging of cluster behaviors and characterization of cluster mechanisms with a variety of proteins will soon lead to major breakthroughs in protein biophysics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Crystal Growth and Characterization of Materials
Progress in Crystal Growth and Characterization of Materials 工程技术-材料科学:表征与测试
CiteScore
8.80
自引率
2.00%
发文量
10
审稿时长
1 day
期刊介绍: Materials especially crystalline materials provide the foundation of our modern technologically driven world. The domination of materials is achieved through detailed scientific research. Advances in the techniques of growing and assessing ever more perfect crystals of a wide range of materials lie at the roots of much of today''s advanced technology. The evolution and development of crystalline materials involves research by dedicated scientists in academia as well as industry involving a broad field of disciplines including biology, chemistry, physics, material sciences and engineering. Crucially important applications in information technology, photonics, energy storage and harvesting, environmental protection, medicine and food production require a deep understanding of and control of crystal growth. This can involve suitable growth methods and material characterization from the bulk down to the nano-scale.
期刊最新文献
Novel enhancing materials for biosensor design: The case studies of erbium-, gadolinium- and strontium-doped Ca10(PO4)6(OH)2 hydroxyapatite Editorial Board Electrospray crystallization: A review on submicrometric and nanosized crystal synthesis Editorial Board The equation of life in the Universe: Biomorphs as reminiscence of the first forms of life
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1