器官发生解剖学:老问题的新解决方案

Jamie A. Davies, Jane E. Armstrong
{"title":"器官发生解剖学:老问题的新解决方案","authors":"Jamie A. Davies,&nbsp;Jane E. Armstrong","doi":"10.1016/j.proghi.2006.02.001","DOIUrl":null,"url":null,"abstract":"<div><p><span>Understanding anatomical aspects of mammalian organ development, in both normal and mutant animals, is important for basic biology and also for regenerative medicine and tissue engineering. The size and complexity of developing organs, together with variations in their detailed anatomy, has made the obtaining of high-resolution time-courses of anatomical change difficult to obtain. The fact that organ development tends to use the same genes as early </span>embryogenesis also makes genetic manipulation difficult, as so many mutant embryos die before organogenesis begins. These problems have seriously hampered the study of organogenesis. Here, we describe three significant advances that promise solutions: (1) the production of GFP-reporter mice that can be used for high-resolution live-imaging of small tissues as they grow, (2) RNA interference, which allows the manipulation of specific genes at any stage of organ development, and (3) optical projection tomography, which allows medium-resolution three-dimensional images of complete embryos to be obtained easily. We finish by looking ahead to the prospects of uniting these three technologies to allow accurate, high-throughput screening of mutants and automated comparison of biological data with computer predictions.</p></div>","PeriodicalId":54550,"journal":{"name":"Progress in Histochemistry and Cytochemistry","volume":"40 3","pages":"Pages 165-176"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.proghi.2006.02.001","citationCount":"9","resultStr":"{\"title\":\"The anatomy of organogenesis: Novel solutions to old problems\",\"authors\":\"Jamie A. Davies,&nbsp;Jane E. Armstrong\",\"doi\":\"10.1016/j.proghi.2006.02.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Understanding anatomical aspects of mammalian organ development, in both normal and mutant animals, is important for basic biology and also for regenerative medicine and tissue engineering. The size and complexity of developing organs, together with variations in their detailed anatomy, has made the obtaining of high-resolution time-courses of anatomical change difficult to obtain. The fact that organ development tends to use the same genes as early </span>embryogenesis also makes genetic manipulation difficult, as so many mutant embryos die before organogenesis begins. These problems have seriously hampered the study of organogenesis. Here, we describe three significant advances that promise solutions: (1) the production of GFP-reporter mice that can be used for high-resolution live-imaging of small tissues as they grow, (2) RNA interference, which allows the manipulation of specific genes at any stage of organ development, and (3) optical projection tomography, which allows medium-resolution three-dimensional images of complete embryos to be obtained easily. We finish by looking ahead to the prospects of uniting these three technologies to allow accurate, high-throughput screening of mutants and automated comparison of biological data with computer predictions.</p></div>\",\"PeriodicalId\":54550,\"journal\":{\"name\":\"Progress in Histochemistry and Cytochemistry\",\"volume\":\"40 3\",\"pages\":\"Pages 165-176\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.proghi.2006.02.001\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Histochemistry and Cytochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079633606000039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Histochemistry and Cytochemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079633606000039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 9

摘要

了解正常和突变动物的哺乳动物器官发育的解剖学方面,对基础生物学、再生医学和组织工程都很重要。发育器官的大小和复杂性,以及它们详细解剖结构的变化,使得获得解剖变化的高分辨率时间过程变得困难。器官发育倾向于使用与早期胚胎发生相同的基因,这一事实也使得基因操作变得困难,因为许多突变胚胎在器官发生开始之前就死亡了。这些问题严重阻碍了器官发生的研究。在这里,我们描述了三个有望解决问题的重大进展:(1)生产gfp报告小鼠,可以用于小组织生长过程中的高分辨率实时成像;(2)RNA干扰,允许在器官发育的任何阶段操作特定基因;(3)光学投影断层扫描,可以轻松获得完整胚胎的中分辨率三维图像。最后,我们展望了将这三种技术结合起来的前景,以便对突变体进行准确、高通量的筛选,并将生物数据与计算机预测进行自动比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The anatomy of organogenesis: Novel solutions to old problems

Understanding anatomical aspects of mammalian organ development, in both normal and mutant animals, is important for basic biology and also for regenerative medicine and tissue engineering. The size and complexity of developing organs, together with variations in their detailed anatomy, has made the obtaining of high-resolution time-courses of anatomical change difficult to obtain. The fact that organ development tends to use the same genes as early embryogenesis also makes genetic manipulation difficult, as so many mutant embryos die before organogenesis begins. These problems have seriously hampered the study of organogenesis. Here, we describe three significant advances that promise solutions: (1) the production of GFP-reporter mice that can be used for high-resolution live-imaging of small tissues as they grow, (2) RNA interference, which allows the manipulation of specific genes at any stage of organ development, and (3) optical projection tomography, which allows medium-resolution three-dimensional images of complete embryos to be obtained easily. We finish by looking ahead to the prospects of uniting these three technologies to allow accurate, high-throughput screening of mutants and automated comparison of biological data with computer predictions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.67
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Progress in Histochemistry and Cytochemistry publishes comprehensive and analytical reviews within the entire field of histochemistry and cytochemistry. Methodological contributions as well as papers in the fields of applied histo- and cytochemistry (e.g. cell biology, pathology, clinical disciplines) will be accepted.
期刊最新文献
Intracellular and extracellular microRNA: An update on localization and biological role Protein multiplicity can lead to misconduct in western blotting and misinterpretation of immunohistochemical staining results, creating much conflicting data ifc Editorial Board A survey of clearing techniques for 3D imaging of tissues with special reference to connective tissue L1CAM: Cell adhesion and more
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1