Armando Arroyo, Beomsu Kim, Randall L Rasmusson, Glenna Bett, John Yeh
{"title":"超极化激活的阳离子通道在大鼠下丘脑促性腺激素释放激素(GnRH)神经元和永生化GnRH神经元中表达。","authors":"Armando Arroyo, Beomsu Kim, Randall L Rasmusson, Glenna Bett, John Yeh","doi":"10.1016/j.jsgi.2006.05.010","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The current research was conducted to determine whether hyperpolarization-activated cyclic nucleotide-gated (HCN1-4) channels are expressed in gonadotropin-releasing hormone (GnRH) neurons in the female rat hypothalamus and immortalized GnRH neurons (GT1-7 cells).</p><p><strong>Methods: </strong>Double-label fluorescence immunohistochemistry was used to colocalize HCN1-4 channels and GnRH in GnRH neurons in the female rat hypothalamus. Reverse transcriptase-polymerase chain reaction (RT-PCR), Western blotting, and immunocytochemistry were used to analyze HCN channel gene expression in GT1-7 cells.</p><p><strong>Results: </strong>Double-label fluorescence immunohistochemistry showed that 43% of hypothalamic GnRH neurons immunostained for HCN2 and 90% of GnRH neurons immunostained for HCN3. RT-PCR and Western blot showed expression of all four HCN channel subunits in GT1-7 cells. Double-label immunocytochemistry showed cytoplasmic immunostaining of HCN2 and HCN3 in GT1-7 cells.</p><p><strong>Conclusions: </strong>This study demonstrates for the first time that HCN channels are expressed in GnRH neurons in the rat hypothalamus and GT1-7 cells. Our research supports the hypothesis that HCN channels may be involved in electrical bursting activity and pulsatile GnRH secretion in endogenous GnRH neurons and GT1-7 cells.</p>","PeriodicalId":17373,"journal":{"name":"Journal of the Society for Gynecologic Investigation","volume":"13 6","pages":"442-50"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jsgi.2006.05.010","citationCount":"22","resultStr":"{\"title\":\"Hyperpolarization-activated cation channels are expressed in rat hypothalamic gonadotropin-releasing hormone (GnRH) neurons and immortalized GnRH neurons.\",\"authors\":\"Armando Arroyo, Beomsu Kim, Randall L Rasmusson, Glenna Bett, John Yeh\",\"doi\":\"10.1016/j.jsgi.2006.05.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>The current research was conducted to determine whether hyperpolarization-activated cyclic nucleotide-gated (HCN1-4) channels are expressed in gonadotropin-releasing hormone (GnRH) neurons in the female rat hypothalamus and immortalized GnRH neurons (GT1-7 cells).</p><p><strong>Methods: </strong>Double-label fluorescence immunohistochemistry was used to colocalize HCN1-4 channels and GnRH in GnRH neurons in the female rat hypothalamus. Reverse transcriptase-polymerase chain reaction (RT-PCR), Western blotting, and immunocytochemistry were used to analyze HCN channel gene expression in GT1-7 cells.</p><p><strong>Results: </strong>Double-label fluorescence immunohistochemistry showed that 43% of hypothalamic GnRH neurons immunostained for HCN2 and 90% of GnRH neurons immunostained for HCN3. RT-PCR and Western blot showed expression of all four HCN channel subunits in GT1-7 cells. Double-label immunocytochemistry showed cytoplasmic immunostaining of HCN2 and HCN3 in GT1-7 cells.</p><p><strong>Conclusions: </strong>This study demonstrates for the first time that HCN channels are expressed in GnRH neurons in the rat hypothalamus and GT1-7 cells. Our research supports the hypothesis that HCN channels may be involved in electrical bursting activity and pulsatile GnRH secretion in endogenous GnRH neurons and GT1-7 cells.</p>\",\"PeriodicalId\":17373,\"journal\":{\"name\":\"Journal of the Society for Gynecologic Investigation\",\"volume\":\"13 6\",\"pages\":\"442-50\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jsgi.2006.05.010\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Society for Gynecologic Investigation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jsgi.2006.05.010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2006/7/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Society for Gynecologic Investigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jsgi.2006.05.010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2006/7/31 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Hyperpolarization-activated cation channels are expressed in rat hypothalamic gonadotropin-releasing hormone (GnRH) neurons and immortalized GnRH neurons.
Objectives: The current research was conducted to determine whether hyperpolarization-activated cyclic nucleotide-gated (HCN1-4) channels are expressed in gonadotropin-releasing hormone (GnRH) neurons in the female rat hypothalamus and immortalized GnRH neurons (GT1-7 cells).
Methods: Double-label fluorescence immunohistochemistry was used to colocalize HCN1-4 channels and GnRH in GnRH neurons in the female rat hypothalamus. Reverse transcriptase-polymerase chain reaction (RT-PCR), Western blotting, and immunocytochemistry were used to analyze HCN channel gene expression in GT1-7 cells.
Results: Double-label fluorescence immunohistochemistry showed that 43% of hypothalamic GnRH neurons immunostained for HCN2 and 90% of GnRH neurons immunostained for HCN3. RT-PCR and Western blot showed expression of all four HCN channel subunits in GT1-7 cells. Double-label immunocytochemistry showed cytoplasmic immunostaining of HCN2 and HCN3 in GT1-7 cells.
Conclusions: This study demonstrates for the first time that HCN channels are expressed in GnRH neurons in the rat hypothalamus and GT1-7 cells. Our research supports the hypothesis that HCN channels may be involved in electrical bursting activity and pulsatile GnRH secretion in endogenous GnRH neurons and GT1-7 cells.