Emiko Kazuma , Jaehoon Jung , Hiromu Ueba , Michael Trenary , Yousoo Kim
{"title":"金属表面光化学和等离子体化学的STM研究","authors":"Emiko Kazuma , Jaehoon Jung , Hiromu Ueba , Michael Trenary , Yousoo Kim","doi":"10.1016/j.progsurf.2018.08.003","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>We review our recent studies of photochemistry<span> and plasmon </span></span>chemistry<span> of dimethyl disulfide, (CH</span></span><sub>3</sub>S)<sub>2</sub><span>, molecules adsorbed on metal surfaces<span><span> using a scanning tunneling microscope (STM). The STM has been used not only for the observation of surface structures at atomic spatial resolution but also for local spectroscopies. The STM combined with optical excitation by light can be employed to investigate chemical reactions of single molecules induced by photons and localized surface plasmons. This technique allows us to gain insights into reaction mechanisms at a single molecule level. The experimental procedures to examine the chemical reactions using the STM are briefly described. The mechanism for the </span>photodissociation reaction of (CH</span></span><sub>3</sub>S)<sub>2</sub><span> molecules adsorbed on metal surfaces is discussed based on both the experimental results obtained with the STM and the electronic structures calculated by density functional theory<span>. The dissociation reaction of the (CH</span></span><sub>3</sub>S)<sub>2</sub> molecule induced by the optically excited plasmon in the STM junction between a Ag tip and metal substrate is also described. The reaction mechanism and pathway of this plasmon-induced chemical reaction are discussed by comparison with those proposed in plasmon chemistry.</p></div>","PeriodicalId":416,"journal":{"name":"Progress in Surface Science","volume":"93 4","pages":"Pages 163-176"},"PeriodicalIF":8.7000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.progsurf.2018.08.003","citationCount":"16","resultStr":"{\"title\":\"STM studies of photochemistry and plasmon chemistry on metal surfaces\",\"authors\":\"Emiko Kazuma , Jaehoon Jung , Hiromu Ueba , Michael Trenary , Yousoo Kim\",\"doi\":\"10.1016/j.progsurf.2018.08.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>We review our recent studies of photochemistry<span> and plasmon </span></span>chemistry<span> of dimethyl disulfide, (CH</span></span><sub>3</sub>S)<sub>2</sub><span>, molecules adsorbed on metal surfaces<span><span> using a scanning tunneling microscope (STM). The STM has been used not only for the observation of surface structures at atomic spatial resolution but also for local spectroscopies. The STM combined with optical excitation by light can be employed to investigate chemical reactions of single molecules induced by photons and localized surface plasmons. This technique allows us to gain insights into reaction mechanisms at a single molecule level. The experimental procedures to examine the chemical reactions using the STM are briefly described. The mechanism for the </span>photodissociation reaction of (CH</span></span><sub>3</sub>S)<sub>2</sub><span> molecules adsorbed on metal surfaces is discussed based on both the experimental results obtained with the STM and the electronic structures calculated by density functional theory<span>. The dissociation reaction of the (CH</span></span><sub>3</sub>S)<sub>2</sub> molecule induced by the optically excited plasmon in the STM junction between a Ag tip and metal substrate is also described. The reaction mechanism and pathway of this plasmon-induced chemical reaction are discussed by comparison with those proposed in plasmon chemistry.</p></div>\",\"PeriodicalId\":416,\"journal\":{\"name\":\"Progress in Surface Science\",\"volume\":\"93 4\",\"pages\":\"Pages 163-176\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.progsurf.2018.08.003\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Surface Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079681618300236\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Surface Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079681618300236","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
STM studies of photochemistry and plasmon chemistry on metal surfaces
We review our recent studies of photochemistry and plasmon chemistry of dimethyl disulfide, (CH3S)2, molecules adsorbed on metal surfaces using a scanning tunneling microscope (STM). The STM has been used not only for the observation of surface structures at atomic spatial resolution but also for local spectroscopies. The STM combined with optical excitation by light can be employed to investigate chemical reactions of single molecules induced by photons and localized surface plasmons. This technique allows us to gain insights into reaction mechanisms at a single molecule level. The experimental procedures to examine the chemical reactions using the STM are briefly described. The mechanism for the photodissociation reaction of (CH3S)2 molecules adsorbed on metal surfaces is discussed based on both the experimental results obtained with the STM and the electronic structures calculated by density functional theory. The dissociation reaction of the (CH3S)2 molecule induced by the optically excited plasmon in the STM junction between a Ag tip and metal substrate is also described. The reaction mechanism and pathway of this plasmon-induced chemical reaction are discussed by comparison with those proposed in plasmon chemistry.
期刊介绍:
Progress in Surface Science publishes progress reports and review articles by invited authors of international stature. The papers are aimed at surface scientists and cover various aspects of surface science. Papers in the new section Progress Highlights, are more concise and general at the same time, and are aimed at all scientists. Because of the transdisciplinary nature of surface science, topics are chosen for their timeliness from across the wide spectrum of scientific and engineering subjects. The journal strives to promote the exchange of ideas between surface scientists in the various areas. Authors are encouraged to write articles that are of relevance and interest to both established surface scientists and newcomers in the field.