影响上呼吸道磁性颗粒滞留的因素:一项体外和离体研究。

J Ally, A Amirfazli, W Roa
{"title":"影响上呼吸道磁性颗粒滞留的因素:一项体外和离体研究。","authors":"J Ally,&nbsp;A Amirfazli,&nbsp;W Roa","doi":"10.1089/jam.2006.19.491","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents the results of experiments using an in vitro model and an ex vivo animal model (Rana catesbeiana) to study magnetic particle retention in the conducting airways, specifically the trachea and bronchi. The purpose of these experiments was to determine the significant factors for retention of magnetic particles deposited from an aerosol at the airway surface using a magnetic field. The results indicate that the apparent viscosity of the mucus layer at low shear rates is the most significant obstacle to particle retention. The results also show that particle size and aggregation play major roles in particle retention. The mucus transport rate, unlike the effect of fluid velocity in intravenous applications, did not appear to be a determining factor for particle retention. It was also found that a suitably designed magnetic system, aside from having a high intensity, needs to exert a strong radial field to promote particle aggregation. The findings suggest that one possible approach to magnetic particle retention could be delivery of a mucolytic agent along with the drug particles. This study provides the fundamentals needed for development of a targeted magnetic drug delivery system for inhaled therapeutic aerosol particles.</p>","PeriodicalId":14878,"journal":{"name":"Journal of aerosol medicine : the official journal of the International Society for Aerosols in Medicine","volume":"19 4","pages":"491-509"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/jam.2006.19.491","citationCount":"18","resultStr":"{\"title\":\"Factors affecting magnetic retention of particles in the upper airways: an in vitro and ex vivo study.\",\"authors\":\"J Ally,&nbsp;A Amirfazli,&nbsp;W Roa\",\"doi\":\"10.1089/jam.2006.19.491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper presents the results of experiments using an in vitro model and an ex vivo animal model (Rana catesbeiana) to study magnetic particle retention in the conducting airways, specifically the trachea and bronchi. The purpose of these experiments was to determine the significant factors for retention of magnetic particles deposited from an aerosol at the airway surface using a magnetic field. The results indicate that the apparent viscosity of the mucus layer at low shear rates is the most significant obstacle to particle retention. The results also show that particle size and aggregation play major roles in particle retention. The mucus transport rate, unlike the effect of fluid velocity in intravenous applications, did not appear to be a determining factor for particle retention. It was also found that a suitably designed magnetic system, aside from having a high intensity, needs to exert a strong radial field to promote particle aggregation. The findings suggest that one possible approach to magnetic particle retention could be delivery of a mucolytic agent along with the drug particles. This study provides the fundamentals needed for development of a targeted magnetic drug delivery system for inhaled therapeutic aerosol particles.</p>\",\"PeriodicalId\":14878,\"journal\":{\"name\":\"Journal of aerosol medicine : the official journal of the International Society for Aerosols in Medicine\",\"volume\":\"19 4\",\"pages\":\"491-509\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1089/jam.2006.19.491\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of aerosol medicine : the official journal of the International Society for Aerosols in Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/jam.2006.19.491\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of aerosol medicine : the official journal of the International Society for Aerosols in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/jam.2006.19.491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

本文介绍了利用体外模型和离体动物模型(Rana catesbeiana)研究磁颗粒在导电气道(特别是气管和支气管)中的滞留的实验结果。这些实验的目的是利用磁场确定气溶胶沉积的磁性颗粒在气道表面保留的重要因素。结果表明,低剪切速率下黏液层的表观粘度是颗粒滞留的最大障碍。结果还表明,颗粒的大小和聚集对颗粒的保留起主要作用。黏液输送速率,不像静脉注射中液体流速的影响,似乎不是颗粒滞留的决定因素。还发现,设计合适的磁系统,除了具有高强度外,还需要施加强大的径向场来促进粒子聚集。研究结果表明,磁性颗粒保留的一种可能方法是随着药物颗粒一起递送黏液剂。这项研究为开发用于吸入治疗性气溶胶颗粒的靶向磁性药物输送系统提供了必要的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Factors affecting magnetic retention of particles in the upper airways: an in vitro and ex vivo study.

This paper presents the results of experiments using an in vitro model and an ex vivo animal model (Rana catesbeiana) to study magnetic particle retention in the conducting airways, specifically the trachea and bronchi. The purpose of these experiments was to determine the significant factors for retention of magnetic particles deposited from an aerosol at the airway surface using a magnetic field. The results indicate that the apparent viscosity of the mucus layer at low shear rates is the most significant obstacle to particle retention. The results also show that particle size and aggregation play major roles in particle retention. The mucus transport rate, unlike the effect of fluid velocity in intravenous applications, did not appear to be a determining factor for particle retention. It was also found that a suitably designed magnetic system, aside from having a high intensity, needs to exert a strong radial field to promote particle aggregation. The findings suggest that one possible approach to magnetic particle retention could be delivery of a mucolytic agent along with the drug particles. This study provides the fundamentals needed for development of a targeted magnetic drug delivery system for inhaled therapeutic aerosol particles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Formoterol turbuhaler is as effective as salbutamol diskus in relieving adenosine-induced bronchoconstriction in children. An in vitro study to assess facial and ocular deposition from Respimat Soft Mist inhaler. Exhaled breath condensate pH is increased after moderate exercise. The analysis and prediction of functional robustness of inhaler devices. Comparison of the Diskus inhaler and the Handihaler regarding preference and ease of use.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1