{"title":"合成调谐的金属间化合物的电子和几何性质作为有效的非均相催化剂","authors":"Vijaykumar S. Marakatti, Sebastian C. Peter","doi":"10.1016/j.progsolidstchem.2018.09.001","DOIUrl":null,"url":null,"abstract":"<div><p><span>Intermetallic compounds (IMCs) exhibits unique structural features accompanied by appropriate changes in the electronic structures. These electronically and geometrically tuned structures found to be the excellent catalysts for selected chemical reactions. There is not enough literature comprising detailed synthesis, properties and catalytic activity of IMCs. In this review, a complete overview of the IMCs in the field of </span>heterogeneous catalysis<span><span> has been discussed in detail. The review starts with understanding IMCs and how are they different from alloys, solid solutions and bimetallic. The physicochemical properties such as electronic effect, geometrical effect, steric effect and ordering of the IMCs are explained with appropriate examples. The comprehensive discussion on the synthesis and characterization of IMCs by various methods are also included in the review. The review cover the classification of IMCs into mainly 3 groups based on the active metal a) Platinum b) Palladium c) Nickel and the compounds based on each of these family is discussed along with the structure-activity correlation in different organic reactions. Several miscellaneous examples including other active metals Rh, </span>Ru, Al, and Co are also included in the review followed by the future perspective. Overall, one can fine-tune and design the essential electronic -geometrical properties in the IMCs by combining appropriate metals, leading to the new surface properties suitable for the important organic reactions.</span></p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":null,"pages":null},"PeriodicalIF":9.1000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.progsolidstchem.2018.09.001","citationCount":"45","resultStr":"{\"title\":\"Synthetically tuned electronic and geometrical properties of intermetallic compounds as effective heterogeneous catalysts\",\"authors\":\"Vijaykumar S. Marakatti, Sebastian C. Peter\",\"doi\":\"10.1016/j.progsolidstchem.2018.09.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Intermetallic compounds (IMCs) exhibits unique structural features accompanied by appropriate changes in the electronic structures. These electronically and geometrically tuned structures found to be the excellent catalysts for selected chemical reactions. There is not enough literature comprising detailed synthesis, properties and catalytic activity of IMCs. In this review, a complete overview of the IMCs in the field of </span>heterogeneous catalysis<span><span> has been discussed in detail. The review starts with understanding IMCs and how are they different from alloys, solid solutions and bimetallic. The physicochemical properties such as electronic effect, geometrical effect, steric effect and ordering of the IMCs are explained with appropriate examples. The comprehensive discussion on the synthesis and characterization of IMCs by various methods are also included in the review. The review cover the classification of IMCs into mainly 3 groups based on the active metal a) Platinum b) Palladium c) Nickel and the compounds based on each of these family is discussed along with the structure-activity correlation in different organic reactions. Several miscellaneous examples including other active metals Rh, </span>Ru, Al, and Co are also included in the review followed by the future perspective. Overall, one can fine-tune and design the essential electronic -geometrical properties in the IMCs by combining appropriate metals, leading to the new surface properties suitable for the important organic reactions.</span></p></div>\",\"PeriodicalId\":415,\"journal\":{\"name\":\"Progress in Solid State Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.progsolidstchem.2018.09.001\",\"citationCount\":\"45\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Solid State Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S007967861830027X\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Solid State Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S007967861830027X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Synthetically tuned electronic and geometrical properties of intermetallic compounds as effective heterogeneous catalysts
Intermetallic compounds (IMCs) exhibits unique structural features accompanied by appropriate changes in the electronic structures. These electronically and geometrically tuned structures found to be the excellent catalysts for selected chemical reactions. There is not enough literature comprising detailed synthesis, properties and catalytic activity of IMCs. In this review, a complete overview of the IMCs in the field of heterogeneous catalysis has been discussed in detail. The review starts with understanding IMCs and how are they different from alloys, solid solutions and bimetallic. The physicochemical properties such as electronic effect, geometrical effect, steric effect and ordering of the IMCs are explained with appropriate examples. The comprehensive discussion on the synthesis and characterization of IMCs by various methods are also included in the review. The review cover the classification of IMCs into mainly 3 groups based on the active metal a) Platinum b) Palladium c) Nickel and the compounds based on each of these family is discussed along with the structure-activity correlation in different organic reactions. Several miscellaneous examples including other active metals Rh, Ru, Al, and Co are also included in the review followed by the future perspective. Overall, one can fine-tune and design the essential electronic -geometrical properties in the IMCs by combining appropriate metals, leading to the new surface properties suitable for the important organic reactions.
期刊介绍:
Progress in Solid State Chemistry offers critical reviews and specialized articles written by leading experts in the field, providing a comprehensive view of solid-state chemistry. It addresses the challenge of dispersed literature by offering up-to-date assessments of research progress and recent developments. Emphasis is placed on the relationship between physical properties and structural chemistry, particularly imperfections like vacancies and dislocations. The reviews published in Progress in Solid State Chemistry emphasize critical evaluation of the field, along with indications of current problems and future directions. Papers are not intended to be bibliographic in nature but rather to inform a broad range of readers in an inherently multidisciplinary field by providing expert treatises oriented both towards specialists in different areas of the solid state and towards nonspecialists. The authorship is international, and the subject matter will be of interest to chemists, materials scientists, physicists, metallurgists, crystallographers, ceramists, and engineers interested in the solid state.