{"title":"利用氮氧化物和氮化物在可见光下减少二氧化碳","authors":"Kazuhiko Maeda","doi":"10.1016/j.progsolidstchem.2017.11.003","DOIUrl":null,"url":null,"abstract":"<div><p>Reduction of CO<sub>2</sub><span><span> using a heterogeneous photocatalyst under </span>visible light has been studied as a potential means to address the problems of global warming and the depletion of fossil fuels. Recently, hybrid photocatalysts constructed with a metal complex and a particulate semiconductor are of particular interest because of the excellent electrochemical (and/or photocatalytic) ability of the metal complexes for CO</span><sub>2</sub><span> reduction and the high efficiency of the semiconductors for oxidation reactions, where the ultimate target of oxidation reaction is water oxidation to form molecular O</span><sub>2</sub><span>. This review article highlights our recent progress in the development of metal-complex/semiconductor hybrid materials for visible-light CO</span><sub>2</sub><span> reduction with a focus on oxynitride<span> and nitride materials as the semiconductor component.</span></span></p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":null,"pages":null},"PeriodicalIF":9.1000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.progsolidstchem.2017.11.003","citationCount":"20","resultStr":"{\"title\":\"CO2 reduction using oxynitrides and nitrides under visible light\",\"authors\":\"Kazuhiko Maeda\",\"doi\":\"10.1016/j.progsolidstchem.2017.11.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Reduction of CO<sub>2</sub><span><span> using a heterogeneous photocatalyst under </span>visible light has been studied as a potential means to address the problems of global warming and the depletion of fossil fuels. Recently, hybrid photocatalysts constructed with a metal complex and a particulate semiconductor are of particular interest because of the excellent electrochemical (and/or photocatalytic) ability of the metal complexes for CO</span><sub>2</sub><span> reduction and the high efficiency of the semiconductors for oxidation reactions, where the ultimate target of oxidation reaction is water oxidation to form molecular O</span><sub>2</sub><span>. This review article highlights our recent progress in the development of metal-complex/semiconductor hybrid materials for visible-light CO</span><sub>2</sub><span> reduction with a focus on oxynitride<span> and nitride materials as the semiconductor component.</span></span></p></div>\",\"PeriodicalId\":415,\"journal\":{\"name\":\"Progress in Solid State Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.progsolidstchem.2017.11.003\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Solid State Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079678617300298\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Solid State Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079678617300298","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
CO2 reduction using oxynitrides and nitrides under visible light
Reduction of CO2 using a heterogeneous photocatalyst under visible light has been studied as a potential means to address the problems of global warming and the depletion of fossil fuels. Recently, hybrid photocatalysts constructed with a metal complex and a particulate semiconductor are of particular interest because of the excellent electrochemical (and/or photocatalytic) ability of the metal complexes for CO2 reduction and the high efficiency of the semiconductors for oxidation reactions, where the ultimate target of oxidation reaction is water oxidation to form molecular O2. This review article highlights our recent progress in the development of metal-complex/semiconductor hybrid materials for visible-light CO2 reduction with a focus on oxynitride and nitride materials as the semiconductor component.
期刊介绍:
Progress in Solid State Chemistry offers critical reviews and specialized articles written by leading experts in the field, providing a comprehensive view of solid-state chemistry. It addresses the challenge of dispersed literature by offering up-to-date assessments of research progress and recent developments. Emphasis is placed on the relationship between physical properties and structural chemistry, particularly imperfections like vacancies and dislocations. The reviews published in Progress in Solid State Chemistry emphasize critical evaluation of the field, along with indications of current problems and future directions. Papers are not intended to be bibliographic in nature but rather to inform a broad range of readers in an inherently multidisciplinary field by providing expert treatises oriented both towards specialists in different areas of the solid state and towards nonspecialists. The authorship is international, and the subject matter will be of interest to chemists, materials scientists, physicists, metallurgists, crystallographers, ceramists, and engineers interested in the solid state.